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Chapter 1

Basics

1.1 What is IVEware?

IVEware is a collection of routines written under various platforms and packaged to perform
multiple imputations, variance estimation and, in general, draw inferences from incomplete
data. The software can also be used to perform analysis without any missing data. IVEware
defaults to assuming a simple random sample, but uses the Jackknife Repeated Replication
or Taylor Series Linearization techniques for analyzing data from complex surveys.

IVEware can be run with SAS, Stata, R, SPSS or as stand-alone under the Windows
or Linux environment. The R, Stata, SPSS and stand-alone version can also be used with
the Mac OS. The stand-alone version has limited capabilities for analyzing the multiply
imputed data though the routines for creating imputations are the same across all packages.
The command structure is the same across all platforms. IVEware can be executed using the
built-in XML editor or it can be run using the built-in editor within the four software packages
previously mentioned. The user can also mix and match the codes from these software
packages through a standard XML toggle-parser (for example, < SAS name = “myfile” >
SAS commands < /SAS > will execute the SAS commands and store the commands in the
file “myfile.sas”.) if the provided XML editor is used to execute IVEware commands.

1.2 Download and Setup

Various versions of IVEware can be downloaded and installed from www.iveware.org. Instal-
lation instructions and setup are slightly different for Windows, Linux and MAC operating
systems, therefore, it is very important to follow the instructions for IVEware to work prop-
erly.

1.2.1 Windows

1. Download the srclib_windows.msi installer file. IVEware is downloaded from a Uni-
versity of Michigan Google Shared Drive, which will issue a canned warning: “Google Drive
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6 CHAPTER 1. BASICS

can’t scan this file for viruses. This file is executable and may harm your computer. Down-
load anyway?” You can safely ignore the warning and download the installer.

2. Run the installer. The default directory for the installation is “C:\Program Files\Srclib\”,
but you can put it wherever you want it. The location you choose will replace “~/srclib”
in the guides for using IVEware with R, SAS, SPSS, Stata and Srcware. The installer will
create a desktop icon unless you tell it not to.

3. If the Windows Installer detects an existing installation, it will give you a choice of
repairing (updating) the existing installation or removing it. If you want to update IVEware
in its current location, click “Repair”. If you want to change the location, click “Remove”
and repeat the installation process.

4. If you want to save a previous version of IVEware or have it in more than one location,
copy the “C:\Program Files\Srclib” directory (or wherever you installed it) and paste it
where you want it, for example, as “C:\Program Files\IVEware\Srclib\”. You could cre-
ate a desktop icon targeting “C:\Program Files\IVEware\Srclib\srcshell.exe” or run
from that address directly.

5. If you plan to use Srclib with R, SAS, SPSS or Stata and the version you want can’t
be invoked by its lower-case name (rscript for R), edit the Srclib\settings.xml file to provide
the correct path. You can get the correct path from the properties of the desktop icon for
the software.

6. To verify that Srclib is installed correctly, download the srclib_examples_windows.zip

file, extract the Examples directory into an appropriate parent directory. You can put it
wherever you want it.

7. Double-click the Srclib desktop icon, click “File” and then “Open”, navigate to the Ex-
amples directory, open an appropriate setup file, for example, ive_examples_srcware.xml
and click “Run”.

8. Using MS Word or other software, check the *.log files produced by the run to see
that there were no errors and compare the *.lst files produced by run with the corresponding
*.chk files. They should differ only in the dates.

1.2.2 Linux

1. Download the srclib_pclinux.tgz file and extract the srclib directory into an appro-
priate parent directory, such as, /usr/local/ or ~/. You can put it wherever you want it.
The location you choose will replace ~/srclib in the guides for using IVEware with R, SAS,
SPSS, Stata and Srcware.

2. If you plan to use Srclib with R, SAS, SPSS or Stata and the version you want cannot
be invoked by its lower-case name (rscript for R), edit the srclib/settings.xml file to provide
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the correct path.

3. To verify that Srclib is installed correctly, download the srclib_examples_pclinux.tgz

file, extract the examples directory into an appropriate parent directory. You can put it wher-
ever you want it.

4. Navigate to the examples directory and use srcexec to run an appropriate setup file,
for example, ~/srclib/bin/srcexec ive_examples_sas.xml.

5. OR run emacs with “-l ~/srclib/srcshell.el”as a command-line or icon option,
click “File” and then “Open”, navigate to the Examples directory, open an appropriate setup
file, for example, ive_examples_srcware.xml, and press F8.

6. Using the Linux cat and diff commands or other software, check the *.log files produced
by the run to see that there were no errors and compare the *.lst files produced by run with
the corresponding *.chk files. They should differ only in the dates.

1.2.3 Mac OS

1. Download the srclib_macosx.pkg installer file. IVEware is downloaded from a Univer-
sity of Michigan Google Shared Drive, which will issue a canned warning:
“Google Drive cannot scan this file for viruses. This file is executable and may harm your
computer. Download anyway?” You can safely ignore the warning and download the in-
staller.

2. Run the installer. The default directories for the installation are “/Applications/Srcshell.app”
for the app and “/Library/Srclib” for the library. The latter will replace “~/srclib” in the
guides for using IVEware with R, SPSS, Stata and Srcware.

3. If you plan to use Srclib with R, SPSS or Stata and the version you want can’t be
invoked by its lower-case name (rscript for R), edit the /Library/Srclib/settings.xml file to
provide the correct path.

4. To verify that the software is installed correctly, download the srclib_examples_macosx.tgz

file, extract the examples directory into an appropriate parent directory. You can put it wher-
ever you want it.

5. Double-click the Srcshell.app icon in the Applications folder, click “File” and then
“Open”, navigate to the examples directory, open an appropriate setup file, for example,
ive_examples_srcware.xml, click “Run” and then “Run Srcexec”.

6. Using the Mac/Linux cat and diff commands or other software, check the *.log files
produced by the run to see that there were no errors and compare the *.lst files produced
by run with the corresponding *.chk files. They should differ only in the dates.
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1.3 Structure of IVEware

IVEware is organized into seven modules to perform various tasks. The six core modules are
IMPUTE, BBDESIGN, DESCRIBE, REGRESS, SYNTHESIZE and COMBINE
and the seventh module, SASMOD, is specific to SAS.

1. IMPUTE uses a multivariate sequential regression approach (Raghunathan et al
(2001), Raghunathan (2015)). This approach is also called Chained Equations, (Van
Buuren and Oudshoorn (1999)) and Fully Conditional Specification (Van Buuren (2012))
and is used to impute item missing values or unit non-response. IMPUTE can create
multiply imputed data sets and can handle continuous, categorical, count and semi-
continuous variables.

2. BBDESIGN implements the weighted finite population Bayesian Bootstrap approach
to generate synthetic populations from complex survey data. The primary goal is to
incorporate weighting, clustering and stratification in a nonparametric approach for
generating the non-sampled portion of the population from the posterior predictive
distribution, conditional on the observed data and the design information. For more
details see Zhou, Elliott and Raghunathan (2015, 2016a, 2016b)

3. DESCRIBE estimates population means, proportions, subgroup differences, contrasts
and linear combinations of means and proportions. A Taylor Series Linearization
approach is used to obtain variance estimates appropriate for a user-specified complex
sample design. Multiple imputation analysis can also be performed when there is
missing data.

4. REGRESS fits linear, logistic, polytomous, Poisson, Tobit and proportional hazard
regression models. For data resulting from a complex sample design, the Jackknife
Repeated Replication technique is used to obtain variance estimates. As in other
IVEware commands, a multiple imputation analysis can be performed when there are
missing values.

5. SYNTHESIZE uses the multivariate sequential regression approach to create full or
partial synthetic data sets to limit statistical disclosure (See Raghunathan, Reiter and
Rubin (2003), Reiter (2002) and Little, Liu and Raghunathan (2004) for more details.)
All item missing values are also imputed when creating synthetic data sets. However,
DESCRIBE, REGRESS and SASMOD modules cannot be used to analyze synthetic
data sets as they DO NOT implement the appropriate combining rules. Examples of
implementation of correct combining rules for synthesized data sets are included in
later sections of this guide.

6. COMBINE is useful for combining information from multiple sources through mul-
tiple imputation. Suppose that Data 1 provides variables X and Y, Data 2 provides
variables X and Z and Data 3 provides variables Y and Z. COMBINE can be used to
concatenate the three data sets and multiply impute the missing values of X, Y and
Z to create large data sets with complete data on all three variables. All item missing
values in the individual data sets will also be imputed. The multiply imputed combined
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data sets can be analyzed using DESCRIBE, REGRESS and SASMOD modules (see
Schenker, Raghunathan, and Bondarenko (2010) for an application and Dong, Elliott
and Raghunathan (2014a, 2014b) for more details).

7. SASMOD (requires SAS) allows users to take into account complex sample design
features when analyzing data with selected SAS procedures. Currently the following
SAS PROCS can be called: CALIS, CATMOD, GENMOD, LIFEREG, MIXED, NLIN,
PHREG, and PROBIT. A multiple imputation analysis can be performed when there
are missing values. Unlike the other IVEware modules, SASMOD requires SAS.

There are many packages such as R (“with”, “mitools”, and “pool”), Stata (“mi esti-
mate”), SAS (”PROC MI, PROC MIANALYZE”) to analyze multiply imputed data sets.
All these packages can be used within the “XML” structure of IVEware.

1.4 How to run IVEware with software packages?

There are many ways to run IVEware. The choice of how to run the program may depend
upon whether the data is stored as a text file or as a software specific file (such as a SAS data
set) or whether to use the Srcshell XML editor bundled with IVEware or use the built-in
editors in specific software package (such as program editor in SAS). IVEware can also be
run in batch mode using the command file. Given this level of flexibility, it is not possible to
cover every method in detail. Nevertheless, the next few sections provide various example
scenarios which might help users develop code for their own needs and situation. Additional
examples of running IVEware are provided in later chapters.

This section uses the data from a case control study that was conducted in Seattle
and King County to assess the relationship between dietary intake of omega-3 fatty acids
(in particular, docosahexaenoic and eicosapentaenoic acids). These fatty acids are mostly
derived from eating fish or seafood. Table 1.1 provides a list of variables and a description
of the content. The goal of this example is to perform multiple imputation of the missing
values.

1.4.1 IVEware and SAS

As explained earlier, IVEware can be run using the provided XML editor or using the
Regular Program Editor in SAS (NOT the Enhanced Editor). The XML editor
approach is described first as it is our most preferred approach. This analysis uses data
stored in a text file (“mydata2.txt”) with the first row representing the variable names.
Create and save an XML file ( the default extension is “.xml”) with the following structure.
The commands are explained whenever needed.

<sas name="ive_examples">

/* iveware examples - sas version */

/* import the input datasets */
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Table 1.1: A list of variables in the data set used in the example
Variable Description Remarks
CASECNT Case-Control Status 1=Case; 0=Control
AGE Age at the time event (case) Continuous

or interview (control)
GENDER Gender of the subject 1=Female 0=Male
RACE3 Race of the subject 1=White 0=Non-white
HYPER Hypertension status 1=Hypertensive

0=Not hypertensive
DIAB Diabetes Status 1=Diabetic 0=Non-diabetic
SMOKE Smoking Status 1=Never 2=Former

3=Current
NUMCIG Number of Cigarettes per week Continuous,

restricted to current
and former smokers

YRSSMOKE Number of years smoked Continuous,
restricted to current and
former smokers,
must be less than age

FATINDEX Score measuring total Fat intake Continuous
FAMMI History of Family history 1=Yes 0=No
EDUSUBJ3 Education Categories Less than High school,

High school, some College
and College

DHA EPA Dietary intake of Omega-3 based Continuous
on Food Frequency Questionnaire

REDTOT Red cell membrane Continuous
measure of Omega-3

CHOLESTH High cholesterol 1=Yes 0=No
CAFFTOT Caffeine intake Semi-continuous or Mixed
WGTKG Weight in Kilograms Continuous
TOTLKCAL Total Kcal spent on physical activity Continuous
ALCOHOL3 Alcohol Intake Semi-continuous or Mixed
HGTCM Height in centimeters Continuous
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proc import datafile=’mydata2.txt’ out=mydata2 dbms=tab replace;

getnames=yes;

run;

The first line

<sas name="ive_examples">

indicates the beginning of SAS commands which are to be stored in a file called “ive examples.sas”
in the current directory (the same directory where the XML file will be stored). The files
called ive examples.log and ive examples.lst are the corresponding log and list files created
by SAS. The command,

<sas name="ive_examples",dir="c:\mydir">

will store the sas, log and list files in the directory “c:\mydir”.
Once the SAS toggle has been invoked, any SAS commands can be inserted including

comments. Here, ”PROC IMPORT” is used to import a text file and create a data set called
“mydata2.sas7bdat” in the SAS work directory. The user can provide a full path for these
filenames and also use libname in SAS to point to the directory containing the data files.

/* run iveware */

/* multiple imputation */

<impute name="impute">

title Multiple imputation;

datain mydata2;

dataout impute;

default continuous;

categorical casecnt gender race3 hyper diab smoke fammi edusubj3 cholesth;

mixed cafftot alcohol3;

transfer studyid;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3);

bounds numcig(>0) yrssmoke(>0,<=age-12) fatindex(>0) cafftot(>=0) alcohol3(>=0);

maxpred redtot(3) wgtkg(2);

minrsqd .01;

iterations 5;

multiples 5;

seed 2001;

run;

</impute>

The command

<impute name="impute">
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now toggles the beginning of the IMPUTE module and stores commands in a file called
“impute.set” in the current directory (that is, directory where the XML file is stored). All
IVEware files (produced by IMPUTE, DESCRIBE, REGRESS, COMBINE and SYNTHE-
SIZE) have a “.set” extension. The filenames in “datain” and “dataout” can follow the SAS
convention of “libname.sasname” while a libname can be assigned before invoking IMPUTE.
For more detail on IMPUTE keywords, see Chapter 2. The line:

</impute>

indicates the closure or end of the IMPUTE commands. Finally, the

</sas>

command indicates the end of all SAS commands. Now, click “run” to execute the program.
If you already have a setup file named “impute.set” in the directory, it will be overwritten.

Once you have run the Srcshell, you can reuse the SAS setup file it creates, “ive examples.sas”
without Srcshell by issuing the following command

sas ive_examples.sas

in a command window to run in batch mode. Similarly, in the Linux system, you can use

sas ive_examples.sas &

to run the program in background. Suppose that you have a setup file called “previous-
run.set” from a previous run then you can rerun it by creating a simpler xml file consisting
of the single line:

<impute name="previous" />

and then click ”run”.
IVEware can be run interactively in Windows SAS by using the Regular Program Editor

(once again, NOT the Enhanced Editor). First, open or create and save a SAS program
(.sas) file and then submit or run it as usual from the editor. This may be an attractive
option, especially if you are used to running SAS and an earlier version of IVEware. For
example, the first line in the SAS command file is the following options statement:

options set = SRCLIB ’~/srclib/sas’ sasautos=(’!SRCLIB’ sasautos) mautosource;

where

~\srclib

is the IVEware installation directory.
This approach (as opposed to the modification of the SAS configuration file used in the

previous version of IVEware) is easier, especially, when the user does not have write privileges
for the configuration file (such as with a network installation). The following commands can
be used to perform the same set of tasks as in the XML version discussed above.
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/* iveware examples - sas version */

/* import the input datasets */

proc import datafile=’mydata2.txt’ out=mydata2

dbms=tab replace;

getnames=yes;

run;

/* run iveware */

/* multiple imputation */

%impute(name=impute, dir=. setup=new);

title Multiple imputation;

datain mydata2;

dataout impute;

default continuous;

categorical casecnt gender race3 hyper diab smoke fammi

edusubj3 cholesth;

mixed cafftot alcohol3;

transfer studyid;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3);

bounds numcig(>0) yrssmoke(>0,<=age-12) fatindex(>0)

cafftot(>=0) alcohol3(>=0);

maxpred redtot(3) wgtkg(2);

minrsqd .01;

iterations 5;

multiples 5;

seed 2001;

run;

Click ”run” to submit the commands. You can modify the program and use the libname
and other SAS features to read data from a different directory, store the output in another
directory, and save and execute the program in some other directory.

1.4.2 IVEware and R

The structure of running IVEware in the R-package is very similar to running in the SAS
environment as described in the previous section. Using the Srcshell XML editor, you can
create the following commands.

<R name="ive_examples">

# The above line toggles the beginning of the R commands
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# iveware examples - R version

# import the input datasets

mydata2 <- read.delim("mydata2.txt")

save(mydata2, file="mydata2.rda")

# run iveware

# multiple imputation

<impute name="impute">

title Multiple imputation;

datain mydata2;

dataout impute;

default continuous;

categorical casecnt gender race3 hyper diab smoke fammi

edusubj3 cholesth;

mixed cafftot alcohol3;

transfer studyid;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3);

bounds numcig(>0) yrssmoke(>0,<=age-12) fatindex(>0)

cafftot(>=0) alcohol3(>=0);

maxpred redtot(3) wgtkg(2);

minrsqd .01;

iterations 5;

multiples 5;

seed 2001;

run;

</impute>

# The line below indicates the end of R-commands

</R>

Click “run” to execute the command. This will create a file called “ive examples.R” with
R commands and the “impute.set” file with all needed Impute commands . If you already
have the files with those names, then they will be overwritten.

Some users may prefer to run IVEware fully in the R environment instead of using
the Srcshell XML editor. Use any text editor to create save an Impute setup file (say,
“impute.set” or any other file with a “.set” extension) with the following structure. The
command file along with the data file should either be in the same directory or you can
simply provide the full path in the command file.

title Multiple imputation;
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datain mydata2;

dataout impute;

default continuous;

categorical casecnt gender race3 hyper diab smoke fammi

edusubj3 cholesth;

mixed cafftot alcohol3;

transfer studyid;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3);

bounds numcig(>0) yrssmoke(>0,<=age-12) fatindex(>0)

cafftot(>=0) alcohol3(>=0);

maxpred redtot(3) wgtkg(2);

minrsqd .01;

iterations 5;

multiples 5;

seed 2001;

run;

Next Start R. In the R editor, type the R commands and execute as usual.

# iveware examples - R version

# import the input datasets

mydata2 <- read.delim("mydata2.txt")

save(mydata2, file="mydata2.rda")

# initialize srclib

srclib <<- "~/srclib/R"

source(file.path(srclib, "init.R", fsep=.Platform$file.sep))

# run iveware

# multiple imputation

impute(name="impute")

Use the full path of the actual directory where IVEware is installed for

~/srclib

1.4.3 SPSS and IVEware

Running IVEware with SPSS is slightly different. Use the Srcshell XML editor and type the
following commands:
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<spss name="ive_examples">

/* iveware examples - spss version */

/* import the input datasets */

get translate file="mydata2.txt" /type=tab /fieldnames.

save outfile="mydata2.sav".

/* run iveware */

/* multiple imputation */

<impute name="impute">

title Multiple imputation;

datain mydata2;

dataout impute;

default continuous;

categorical casecnt gender race3 hyper diab smoke fammi

edusubj3 cholesth;

mixed cafftot alcohol3;

transfer studyid;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3);

bounds numcig(>0) yrssmoke(>0,<=age-12) fatindex(>0)

cafftot(>=0) alcohol3(>=0);

maxpred redtot(3) wgtkg(2);

minrsqd .01;

iterations 5;

multiples 5;

seed 2001;

run;

</impute>

</spss>

Click ”run”. When SPSS opens its interactive command window, select ”all” and click the
”run” icon to execute the commands.

A successful run of Srcshell with SPSS creates an SPSS setup file called ive examples.sps
for this example. You can modify the file in the future and run without Srcshell by issuing
the following command:

spss ive_examples.sps

Some users may prefer to run using the editor in SPSS without using the Srcshell editor.
The following commands illustrate the use of the SPSS editor. Change to the working
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directory and use the SPSS Syntax Editor to create and save an Impute setup file (say,
“impute.set”) with the following structure:

title Multiple imputation;

datain mydata2;

dataout impute;

default continuous;

categorical casecnt gender race3 hyper diab smoke fammi

edusubj3 cholesth;

mixed cafftot alcohol3;

transfer studyid;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3);

bounds numcig(>0) yrssmoke(>0,<=age-12) fatindex(>0)

cafftot(>=0) alcohol3(>=0);

maxpred redtot(3) wgtkg(2);

minrsqd .01;

iterations 5;

multiples 5;

seed 2001;

run;

Using the Syntax Editor, create and save an SPSS setup file (say, “ive example.sps”)
with the following commands.

begin program.

import sys

sys.path.insert(0, ’~/srclib/spss’)

import srclib

end program.

/* iveware examples - spss version */

/* import the input datasets */

get translate file="mydata2.txt" /type=tab /fieldnames.

save outfile="mydata2.sav".

/* run iveware */

/* multiple imputation */

begin program.

srclib.impute(name="impute")

end program.

Select ”all” and click the ”run” icon. For
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~/srclib

use the exact path of the installation directory of IVEware.

1.4.4 Stata and IVEware

To run Stata with the Srcshell XML editor, type the following commands:

<stata name="ive_examples">

/* iveware examples - stata version */

/* import the input datasets */

insheet using mydata2.txt, clear names case tab

save mydata2, replace

/* run iveware */

/* multiple imputation */

<impute name="impute">

title Multiple imputation;

datain mydata2;

dataout impute;

default continuous;

categorical casecnt gender race3 hyper diab smoke fammi

edusubj3 cholesth;

mixed cafftot alcohol3;

transfer studyid;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3);

bounds numcig(>0) yrssmoke(>0,<=age-12) fatindex(>0)

cafftot(>=0) alcohol3(>=0);

maxpred redtot(3) wgtkg(2);

minrsqd .01;

iterations 5;

multiples 5;

seed 2001;

run;

</impute>

</stata>

Click ”run”. Once you’ve run Srcshell, a Stata setup file called “ive examples.do’ is
created. As with other packages, you can modify the file for future use with any editor and
run using the following commands:
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stata ive_examples.do

As in the case of other software, IVEware can be run using the Stata built-in editor. To
do so, change to the working directory and utilize the Stata do-file editor to create and save
an Impute setup file (“impute.set”) with the following structure:

title Multiple imputation;

datain mydata2;

dataout impute;

default continuous;

categorical casecnt gender race3 hyper diab smoke fammi

edusubj3 cholesth;

mixed cafftot alcohol3;

transfer studyid;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3);

bounds numcig(>0) yrssmoke(>0,<=age-12) fatindex(>0)

cafftot(>=0) alcohol3(>=0);

maxpred redtot(3) wgtkg(2);

minrsqd .01;

iterations 5;

multiples 5;

seed 2001;

run;

In the do-file editor, open or create a Stata setup file with the following structure:

global srclib "~/srclib/stata"

/* iveware examples - stata version */

/* import the input datasets */

insheet using mydata2.txt, clear names case tab

save mydata2, replace

/* run iveware */

/* multiple imputation */

global name "impute"

do $srclib/impute

Click ”run”. As before,

~\srclib

is the name of the IVEware installation directory.
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1.5 How to run IVEware as stand-alone

IVEware can be used as stand-alone software (SRCWARE) for performing multiple impu-
tation (using the IMPUTE module) and perform analyses using DESCRIBE, BBDE-
SIGN, REGRESS, SYNTHESIZE, or COMBINE, with or without incorporation of
complex design features. This section provides example code for reading the data from a text
file and performing multiple imputation. See later chapters for additional examples of code
and output for other analyses/modules. Like other software packages, SRCWARE can be
run using the XML editor or through creation of a setup file using any text editor executed
in a command window.

First, click on the Srclib icon and choose “File” and “New” to create a new command
file. The GETDATA module is used to read a text file containing data, and subsequently
attach variable name, type (character or numeric) and formats (optional). The user can
specify the delimiter as comma (“csv”), space (“\s”), tab (“\t”) etc., and the number of
rows to be skipped prior to reading data from the text file. The following commands read
the example file “myfile2.txt” provided with the software and also described in Section 1.4:

<srcware name=‘‘ive\_examples’’>

/* iveware examples - srcware version */

/* import the input datasets */

<getdata name="mydata2">

data mydata2.txt;

metadata;

delim "\t";

skip 1;

variables

name=STUDYID type=char;

name=CASECNT type=num;

name=AGE;

name=GENDER;

name=RACE3;

name=HYPER;

name=DIAB;

name=SMOKE;

name=NUMCIG;

name=YRSSMOKE;

name=FATINDEX;

name=FAMMI;

name=EDUSUBJ3;

name=DHA_EPA;

name=REDTOT;

name=CHOLESTH;

name=CAFFTOT;



1.5. HOW TO RUN IVEWARE AS STAND-ALONE 21

name=WGTKG;

name=TOTLKCAL;

name=ALCOHOL3;

name=HGTCM;

end;

run;

</getdata>

Note that “skip 1;” instructs GETDATA to skip the first row and the “delim “\t” ” states
that this is tab-delimited data. The keyword “metadata” begins entering of information
about the data, and the keyword “variables” indicates the beginning of establishing the
name and type of the variables in the columns through use of the keywords “name” and
“type”. Finally, “end” closes the entering of metadata. The full extent of what can be
specified under “metadata” keyword is specified below:

metadata

variables

name=gender

type=num

label=‘‘Respondent’s Gender’’

codeframe=sexfmt

location=number

width=number

decimals=number

missing=-9;

codeframe sexfmt 1 male 2 female -9 missing;

end;

The above defines the name, type, label and format of the variable “gender”. For non-
delimited data, location number indicates the starting location column number for the
variable and width number specifies the width of the given variable. This feature cannot
be used with delimited data. The default location number is 1 for the first variable. In
general, the location for any variable is the previous variable location plus the width of the
previous variable. Decimals Number is used to specify the number of implicit decimal
places for the variable. This defaults to 0 for character and non-consecutive variables, and
to the previous number of decimals for non-character variables after the first in a series. The
missing data value for the variable is ”.” or any other missing data type of character(s) such
as .N or .J. with a default of none.

Another option is to put the variable names as the first row and use the following code
to read the data set:

<getdata name=‘‘mydata2’’>

table mydata2.txt;

</getdata>

The following code is then used to specify the multiple imputation:
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/* run iveware */

/* multiple imputation */

<impute name=‘‘impute’’>

title Multiple imputation;

datain mydata2;

dataout impute;

default continuous;

categorical casecnt gender race3 hyper diab smoke fammi

edusubj3 cholesth;

mixed cafftot alcohol3;

transfer studyid;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3);

bounds numcig(>0) yrssmoke(>0,<=age-12) fatindex(>0)

cafftot(>=0) alcohol3(>=0);

maxpred redtot(3) wgtkg(2);

minrsqd .01;

iterations 5;

multiples 5;

seed 2001;

run;

</impute>

</srcware>

To execute, save the file and click “Run’.

1.6 Reading and Writing Other Software Formats

It may be easier to use some other software to write to a file that can be read by IVEware.
This section provides some useful commands for importing and exporting data to other
popular software packages.

1. To write a Gauss data set as a tab-delimited text table that can be read by Srcware,
run the following Gauss command:

rc = export(mydata, "mydata.txt", mynames)

To read a tab-delimited text table created by Srcware, run the following Gauss com-
mand:

{mydata, mynames} = import("mydata.txt", 0, 1)

2. To write an R data set as a tab-delimited text table that can be read by Srcware, run
the following R command:
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write.table(mydata, file="mydata.txt", na="", row.names=FALSE,

qmethod="double", sep="\t")

To read a tab-delimited text table created by Srcware, run the following R command:

mydata<-read.table("mydata.txt", header=TRUE, sep="\t")

3. To write a SAS data set as a tab-delimited text table that can be read by Srcware,
define the library and run the following SAS program:

proc export data=mylib.mydata outfile=’mydata.txt’

dbms=tab replace; run;

To read a tab-delimited text table created by Srcware, define the library and run the
following SAS program:

proc import datafile=’mydata.txt’ out=mylib.mydata dbms=tab

replace; getnames=yes; run;

Specify ”-noterminal” in the SAS invocation to export/import delimited data sets in
non-interactive command-line mode.

4. To write an S-Plus data set as a tab-delimited text table that can be read by Srcware,
define the library and run the following S-Plus command:

write.table(mydata, file="mydata.txt", dimnames.write="col",

na="", sep="\t")

To read a tab-delimited text table created by Srcware, define the library and run the
following S-Plus command:

mydata<-read.table("mydata.txt", header=T, row.names=NULL,

sep="\t")

5. To write an SPSS data set as a tab-delimited text table that can be read by Srcware,
run the following SPSS command:

save translate outfile="mydata.txt" /type=tab /fieldnames

/replace.

To read a tab-delimited text table created by Srcware, run the following SPSS com-
mand:

get translate file="mydata.txt" /type=tab /fieldnames.

The “get” translate function exists only in the Windows implementation of SPSS.
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6. To write a Stata data set as a tab-delimited text table that can be read by Srcware,
open the data set in Stata and run the following command:

outsheet using "mydata.txt", replace nolabel

To read a tab-delimited text table created by Srcware, run the following Stata com-
mand:

insheet using "mydata.txt", clear

7. To write a SUDAAN data set as a tab-delimited text table that can be read by Srcware,
save it as a SAS data set and run the following SAS program:

proc export data=mylib.mydata outfile=’mydata.txt’ dbms=tab

replace; run;

To read a tab-delimited text table created by Srcware, read it as a SAS data set after
running the following SAS program:

proc import datafile=’mydata.txt’ out=mylib.mydata dbms=tab

replace; getnames=yes; run;
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IMPUTE

2.1 Introduction

The IMPUTE module is a general-purpose multivariate imputation procedure that can han-
dle relatively complex data structures when the data are missing at random (Rubin, 1976).
Survey data sets often consist of large numbers of variables that have a variety of distribu-
tional forms. Typically, such data sets have hundreds of variables, some continuous, others
counts, many dichotomous or polytomous, and semi-continuous or limited dependent vari-
ables. IMPUTE can handle such complex data structures.

IMPUTE produces imputed values for each individual in the data set conditional on
all the values observed for that individual using the sequential regression approach (also
called Chained Equations or Flexible Conditional Specifications). The basic strategy is to
create imputations through a sequence of multiple regressions, varying the type of regression
model by the type of variable being imputed. Covariates include all other variables observed
or imputed for that individual. The imputations are defined as draws from the posterior
predictive distribution specified by the regression model with a flat or non-informative prior
distribution for the parameters in the regression model. The sequence of imputing missing
values can be continued in a cyclical manner, each time overwriting previously drawn values,
building interdependence among imputed values and exploiting the correlational structure
among covariates. To generate multiple imputations, the same procedure can be applied with
different random starting seeds or by taking every pth imputed set of values in the cycles
mentioned above. For details see Raghunathan et. al. (2001) and Raghunathan (2015).

IMPUTE assumes the variables in the data set are one of the following five types: con-
tinuous; binary; categorical (polytomous with more than two categories); counts; and mixed
(a continuous variable with a non-zero probability mass at zero). The types of regression
models used are linear, logistic, Poisson, generalized logit or mixed logistic/linear, depending
on the type of variable being imputed.

IMPUTE can also accommodate two common features of survey data that add to the
complexity of the modeling process: (1) the restriction of imputations to sub-populations;
and (2) the bounding of imputed values. First, certain restrictions are imperative, requiring
the sub-setting of sample individuals to satisfy particular criteria while fitting the regression
models. For example, the variable ”Number of Years Since Quit Smoking” is defined only

25



26 CHAPTER 2. IMPUTE

for former smokers; hence, the imputation process for this variable should be restricted
only to former smokers. Restrictions also arise due to skip patterns in the questionnaire.
For example, certain questions about income from a second job are asked only when the
respondent indicates having a second job. The imputation of such variables has to be handled
in a hierarchical manner.

Second, there are certain logical or consistency bounds for missing values that must
be incorporated in the imputation process. Such interrelationships among the variables
make the model specification difficult. For instance, ”Years of Smoking” should not only be
restricted to current or past smokers but the imputed values might be required to be less
than a specified number years, based on other respondent characteristics, such as evidence
of smoking as a teen-ager. In such a case, the imputed upper bound for “Year of Smoking”
might be the respondent’s current age minus 12. This assumes that the respondent may
have started smoking at 12 years of age. For a former smoker, “Year of Smoking” would also
have take into account years since the respondent stopped smoking. Another example of
bounds is discussed in Heeringa, Little and Raghunathan (1997). They address imputation
of bracketed response questions in which a respondent is unable or unwilling to provide
an exact response (e.g., income and assets), but does define the bounds within which the
imputed values must lie. The bounds involve drawing values from a truncated predictive
distribution.

Any imputation software package is a tool that needs to be used judiciously. To obtain
a valid imputation each regression model needs to carefully developed and specified by the
user. Developing such good prediction models requires exploratory data analysis, model
building and model checking through residual diagnostics. Thus, if there are p variables in
the data set with missing values then p regression models have to be developed appropriately
for this software package to produce statistically valid results. There are many good books
on regression that discuss model building strategies (for example, Weisberg (2013), Atkinson
(1985), Vittinghoff, Glidden, Shiboski and McCulloch (2005) and Gelman and Hill (2006)).
Raghunathan (2015) discusses model building and model checking strategies in the context
of missing data.

2.2 Required IMPUTE Statements

2.2.1 Input and Output Data Sets

DATAIN filename;

This required statement identifies the location and name of the input data set. For example,
in a SAS environment, the filename can be expressed as “libname.sasdata”. In other
environments, read the data set and include the name of the data set in the filename.

DATAIN Mylib1.Mydata;

indicates that the SAS data file Mydata is located in the library Mylib1. Mylib1 is
the name assigned to a directory with the SAS Libname statement. (See later sections for
examples).
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DATAOUT outfile [ALL];

This statement identifies the location and name of the output dataset containing the imputed
data. The ALL keyword is optional. If it is specified and more than one imputation is
generated (see keyword MULTIPLES) then the output dataset will be a concatenation of
the multiple imputed data sets. The system variable “ MULT ” , automatically added to
the output file, can be used to distinguish each imputation.

For example,

DATAOUT Mylib2.Impdata ALL;

will store the SAS file Impdata in the library Mylib2, a pointer to the directory with
appropriate SAS libname statement.

2.2.2 DECLARING VARIABLE TYPES

IMPUTE requires that the SAS data set variables be defined by type. Six types of variables
are recognized by the IMPUTE module: continuous, categorical (binary is included as cat-
egorical), count, mixed, transfer and drop. If no variable types are specified, all variables
will be assumed to be continuous. Variable types should be declared before any BOUNDS,
INTERACT, or RESTRICT statements (see below).

CONTINUOUS variable list;

Variables declared as CONTINUOUS may take on any value on a continuum. Income is
an example of a continuous variable. A normal linear regression model is used to impute
the missing values in these variables. You may want to transform the variable to achieve
normality and then impute on the transformed scale. After imputation you may re-transform
the variable back to its original form.

CATEGORICAL variable list;

CATEGORICAL variables have values that represent discrete values. Gender is a categorical
variable. A logistic or generalized logistic model is used to impute missing categorical values.

MIXED variable list;

Variables declared as MIXED are both categorical and continuous. In a mixed variable a
value of zero is treated as a discrete category, while values greater than zero are considered
continuous. Alcohol consumption is an example of a mixed variable. A two stage model is
use to impute the missing values. First, a logistic regression model is used to impute zero
vs. non-zero status. Conditional on imputing a non-zero status, a normal linear regression
model is used to impute non-zero values.

COUNT variable list;

COUNT variables have non-negative integer values. A Poisson regression model is used to
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impute the missing values. The number of annual doctor visits is an example of a COUNT
variable.

Sometimes a normal linear regression model is not appropriate because, for example, the
distribution of the residuals appear non-normal based on the residual diagnostics. For such
variables there are two options (see He and Raghunathan (2006), Bondarenko and Raghu-
nathan (2010) and Raghunathan, Berglund and Solenberger (2017)), ABB (Approximate
Bayesian Bootstrap) and GH (Tukey’s gh-distribution). These can be specified as

ABB varlist;

or

GH varlist;

where varlist are the continuous or mixed variables declared earlier.

DROP variable list;

Variables listed after the DROP keyword will be excluded from the imputation procedure
and will not appear in the imputed data set.

TRANSFER variable list;

Variables listed after the TRANSFER keyword are carried over to the imputed data set,
but are not imputed nor used as predictors in the imputation model. Transfer variables,
however, can be used in the RESTRICT and BOUNDS statements (see below). ID is an
example of a variable that you might want to treat as a transfer variable or any variables
not to be used as predictors in the imputation process (for all the variables being imputed).

DEFAULT variable type;

variable type can be Continuous, Categorical, Count, Mixed, Transfer or Drop. This
keyword declares that by default all the variables in the data set should be treated as the
variable type. The most efficient use of the DEFAULT statement is to declare the most
numerous variable type in your data set as the default type, eliminating the need to type a
long list of variables. The DEFAULT statement must be given before declaring other variable
types.

RUN;

This should be the last statement in your setup file.

2.3 Restrictions and Bounds

RESTRICT variable(logical expression);
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This command is used to restrict the imputation of a variable to those observations that
satisfy the logical expression. For instance, suppose that the variable yrssmoke indicates
the number of years an individual smoked, and the variable smoke takes the value 1 for a
current smoker, 2 for a former smoker or 3 for someone who never smoked.
Then the declaration,

RESTRICT yrssmoke(smoke=1,2);

will impute yrssmoke values only for current and former smokers. It will automatically set
yrssmoke equal to 0 for never smokers.
Restrictions on more than one variable may be combined as follows:

RESTRICT yrssmoke(smoke=1,2) births(female=1) income(employed=1);

When the restriction is not met, the value of the restricted variable will be set to zero for
a continuous and count variables. For a categorical variable, a separate category will be
created with the response code, one higher than the highest observed code for the restricted
categorical variable. For example, the statement,

RESTRICT smoke(age>= 13);

where smoke has 3 categories as described below, will create a category 4 for those with age
<= 12.

BOUNDS variable (logical expression);

This keyword is useful for restricting the range of values to be imputed for a continuous
variable.
For example,

BOUNDS yrssmoke (> 0,<= Age-12);

will ensure that the imputed values for yrssmoke are between 0 and the individual’s Age
minus 12. Smoking is assumed not to begin before the age of 12.
Again, as in the RESTRICT statement more than one variable can be included in the
BOUNDS statement.
For example,

BOUNDS yrssmoke (>0,<= Age-12) numcig(>0);

2.3.1 Model-Building Statements

The fundamental idea behind the sequential regression approach is that the imputation for
every variable should be conditional on all other variables as predictors (unless listed under
DROP or TRANSFER statements). There are practical circumstances where this may
not be possible. The following two commands are useful to select the predictors based on
their predictive power.
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MAXPRED number; OR MAXPRED varlist (number) ;

Specifies the maximum number of predictor variables to be included as predictors in the
regression model. A step-wise regression procedure is used to select the best predictors
subject to the maximum number. Setting MAXPRED to a small number of predictors
will greatly reduce the computational time especially for a very large data sets but the
imputations will not be fully conditional.

For example,

MAXPRED 5;

will include the five best predictor variables for every regression model, the five making the
largest contribution to the r-square (for linear regression models) and Nagelkerke coefficient
of determination for other models.

You can also restrict the number of predictors for selected variables.

MAXPRED Income (7) Educ (3);

will limit the number of predictors of Income to the seven largest contributors to the r-square,
while the number of predictors of Educ are limited to the three largest contributors. For
other variables, all variables will be used as predictors.

The second option to reduce the number of predictors is use of the minimum additional
increase in r-square needed for a variable to be included as a predictor. For example,

MINRSQD decimal;

Specifies the minimum marginal r-squared (or generalized r-squared) of decimal to be in-
cluded as a predictor. This can reduce computation time. A small decimal number like
0.005 would build very large regression models whereas 0.25 will include a smaller number
of predictors in the regression models. If neither MAXPRED nor MINRSQD is set then no
variable selection will be performed.

MAXLOGI number;

Specifies the maximum number of iterative algorithms to be performed in a logistic or multi-
logit regression model. The default is 50. This is useful if the Newton-Raphson algorithm
used in computing the maximum likelihood estimates does not converge after 50 iterations.
This applies to the convergence criterion for the logistic, polytomous and Poisson regression
models. You can check whether you have such a non-convergence problem by inspecting the
log file (e.g., mysetup.log).

MINCODI decimal;

Specifies the minimum proportional change in any regression coefficient to continue the
logistic regression iteration process. This applies to the convergence criterion for the logistic,
polytomous and Poisson regression models.

Sometimes one may want to include interaction terms as predictors in the model. These
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are derived variables. There are two possible options. The first option is to construct the
product terms as new variables in the data set and impute them just like any other variable.
The product term will be set to missing if either variable is missing. The second option is
to impute separately but use the product as the predictor in other regression models. The
following options implement this approach.

INTERACT variable1*variable2;

This keyword enables the user to specify interaction terms to be included in the imputation
regression model.

For example, a specification

INTERACT Income*Income, Age*Race;

will result in including a square term for Income and an interaction term of Age and Race
in the imputation model for all the variables in the data set (except for the variables in the
particular interaction term).

OFFSETS count variables (offset variable) ;

This statement is used to specify an offsets variable when fitting a Poisson regression model.

For example,

OFFSETS Injuries(Years);

will fit a model predicting the number for injuries occurring per year.

Finally, the command,

DIAGNOSE variables/[all];

produces imputation diagnostic plots for all the listed variables. This will produce a series of
imputation plots used to evaluate the imputation process. For more details about these plots
see Bondarenko and Raghunathan (2016). By default, it will produce a set of recommended
set of plots and numerical summaries. The optional command “all”will produce all the
plots generated as a part of the program. Like the “all” feature in the PRINT command
described in Section 2.3.2, the number of output graphs will be voluminous.

2.3.2 Other Commands

ITERATIONS number;

Specifies the number of cycles that the imputation program should iterate for each variable
and imputation. You can specify any number greater than or equal to 2. Current inves-
tigations show that about 10 cycles are sufficient for most imputations. You may want to
experiment with several values and check the differences in the resulting analysis.
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MULTIPLES number;

Indicates the number of imputations to be performed. By default only a single imputation
is generated. Multiples and iterations determine p, the total number of cycles for regression
model fitting for each variable. If 5 multiples and 10 iterations were specified then a total of
50 cycles will be performed. After every 10th cycle an imputed data set will be created.

BY varlist;

This command can be used to perform imputations separately for the distinct combination
of values of the variables in the varlist. For example, if the variable race is coded as
White/non-White and the variable gender is coded as Man/Woman then BY race gender;
will create 4 subgroups and separately impute missing values in all other variables in each
subgroup. No missing values in variables in the varlist are allowed.

PERTURB keyword;

The keyword PERTURB followed by a keyword (COEF/SIR) allows the user to con-
trol perturbations of imputed values. By default, the IMPUTE module will perturb model
coefficients using a multivariate normal approximation of the posterior distribution of the
parameters in the regression model and the predicted values using the appropriate regres-
sion model conditional on the perturbed coefficients. This is equivalent to using the COEF
instruction. SIR uses the Sampling-Importance-Resampling algorithm to generate coeffi-
cients from the actual posterior distribution of parameters in the logistic, polytomous and
Poisson regression models (See Rubin 1987a, Raghunathan and Rubin 1988, Raghunathan
1994, Gelman, et. al 1995). This is appropriate in situations where normal approximation
to the posterior distribution is not appropriate. One example of this situation is a logistic
regression with a low prevalence of the outcome variable (say, less than 1% or 2%).

One should be able to reproduce the imputed data sets at a later time. The SEED
option is useful the generate the same random number sequence and, hence, regenerate the
same set of imputed values.

SEED number;

Specifies a seed for the random draws from the posterior predictive distribution where num-
ber should be greater than zero. A zero seed will result in no perturbations in the regression
coefficients or in the predicted values. If the SEED keyword is missing from the setup file
then the seed will be determined by your computer’s internal clock. However, you may not
be able to recreate the imputed data set at a later date. For replication of results at a later
date, this option must be used and the seed number should be archived.

NOBS number;

Specifies the number of observations to be used in the analysis. By default all observations
in the data set will be used. You might use NOBS to subset a large data set while testing
your setup file.
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PRINT instruction;

Indicates the printout desired. The options are STANDARD, DETAILS, COEF, and ALL.
For the IMPUTE procedure, the STANDARD and DETAILS keywords instruct IVEware
to print the number and distribution of observed values, imputed values, and combined
observed and imputed values for each variable. If the keyword COEF is present, then
IMPUTE will also print the unperturbed and perturbed coefficients for each iteration of
each multiple imputation. When the ALL keyword is used, in addition to the above, the
coefficient covariance matrix for each iteration of each multiple imputation is also printed.
IMPUTE also prints a list of the variables used in the imputation model with columns
indicating the number of observed cases and the number of imputed cases for each of the
variables.

The output from IMPUTE has a column labeled “double counted,” and is useful for
diagnostic purposes. This entry should be zero. A non-zero entry indicates the actual ob-
servations in the data set do not satisfy the restriction specified in RESTRICT statement.
This has caused the program to count it twice (once satisfying the restriction and once more
as not satisfying the restriction). The IMPUTE command, therefore, changes the observed
value of a restricted variable according the restriction rule (zero for continuous variables,
one higher than the highest observed code for categorical variables; see RESTRICT above)
before proceeding with the imputation. In such situations, the data should be checked for
consistency with respect to the specified restriction. For example, if the variable SMOKE,
indicating whether or not a respondent smokes, is missing and the variable YRSMK, indicat-
ing the number of years the respondent has smoked, is observed (say, 10), then logically the
respondent should be classified as a smoker. If, however, the value for SMOKE is missing in
the data set, this creates inconsistency. The IMPUTE program changes SMOKE to smoker
before proceeding with the imputation but then alerts the user to the problem in the data
set. The user should correct the data (either 10 for YRSSMK is an error or setting SMOKE
to missing is an error) and re-run the imputation. Since the restrictions can be complex, it
is possible that for some subjects there could be no resolution. The user should, therefore,
be made aware of the problems.

TITLE text \n text;

Indicates the title(s) to be printed at the top of each page of the printout. A \n indicates
that the text that follows should be printed on the next line. For example,

TITLE This is the title on the first line \n This is the title on the second
line;

2.4 PUTDATA

The IMPUTE module outputs a single data set, the one specified on the DATAOUT state-
ment of your setup file. If you have requested more than one imputation with the keyword
MULTIPLE and have included the keyword ALL in the DATAOUT statement the imputa-
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tions are concatenated in the single output file. The imputations can be distinguished by
the system variable ” MULT ”. If you request more than one imputation with the keyword
MULTIPLE and have not included the keyword ALL in DATAOUT statement only the first
imputation will be included in the output file. The additional imputations are stored in an
internal file and can be retrieved by submitting the PUTDATA statement. For example,
suppose that

<impute name="myfile">

datain mydata;

dataout myoutdata1;

/* Other Impute commands are here */

multiples 5;

run;

</impute>

is the command file executed for creating multiple imputations. The following code uses
PUTDATA to extract the remaining 4 data sets. These data sets are now available for
further analysis simply by calling them into other commands.

/* extract the remaining four multiply imputed datasets */

<putdata name="myfile" mult="2" dataout="mydataout2" />

<putdata name="myfile" mult="3" dataout="mydataout3" />

<putdata name="myfile" mult="4" dataout="mydataout4" />

<putdata name="myfile" mult="5" dataout="mydataout5" />
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BBDESIGN

3.1 Introduction

The BBDESIGN module implements the weighted finite population Bayesian Bootstrap
approach to generate synthetic populations from complex survey data. The primary goal is
to incorporate weighting, clustering and stratification in a nonparametric approach for gen-
erating the non-sampled portion of the population from the posterior predictive distribution,
conditional on the observed data and the design information. BBDESIGN assumes a two
stage stratified cluster sampling approach with unequal probability of sampling at either or
both stages. This approach generates a Bayesian Boostrap sample of non-sampled clusters
and then uses a weighted Poly Urn model to sample non-sampled elements within the sampled
and non-sampled clusters in each stratum. The details about the procedure are described in
Dong, Elliott and Raghunathan (2014a, 2014b) and Zhou, Elliott and Raghunathan(2015,
2016a, 2016b). Once several synthetic populations are generated, the population quantity
can be computed from each synthetic population and these can be combined using simple
rules to form single inference. If there are missing values, then the synthetic populations
are also generated with missing values which can be multiply imputed using the IMPUTE
module. The combining rules, which differ from standard missing data multiple imputa-
tion combining rules, are discussed in the above references and will be illustrated through
examples in later chapters.

3.2 BBDESIGN Statements

DATAIN filename;

This required statement identifies the location and name of the input data set. For example,
in the SAS environment, the filename can be expressed as “libname.sasdata”. In other
environments, read the data set and include the name of the data set in the filename. For
example,

DATAIN Mylib1.Mydata;

indicates that the SAS data file Mydata is located in the library Mylib1. Mylib1 is the
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name assigned to a directory with the SAS libname statement.

DATAOUT outfile ;

This statement identifies the location and name of the output data set containing the syn-
thesized data. If more than one synthetic data set is generated, the output data set will
be a concatenation of the multiple synthesized data sets. The system variable IMPL ,
automatically added to the output file, can be used to distinguish each implicate.

Additional Statements Include:

IMPLICATE number; where number is the number of implicate data sets.

STRATUM var;

where var is the name of the variable in the data set defining the stratum.

CLUSTER var;

where var is the name of the variable in the data set defining the clusters within each
stratum.

WEIGHT var;

where var is the name of the variable in the data set defining the unit level weight.

POPSIZE number;

where the number is the number of observations included in each synthetic population
generated. The default is 10 times the original sample size.

CSAMPLES number;

where number is the number of Bayesian bootstrap samples to be drawn from the sampled
clusters in each stratum. The default is 5.

WSAMPLES number;

where number is the number of times the weighted Polya Urn model to be used to generate
replicates of non-sampled units to be added in each of the Bayesian Bootstrap sample of
clusters. The default is 5.

The number “CSAMPLES” and “WSAMPLES” determines the number synthetic pop-
ulations generated. The default is 25 (5 × 5, the product of the two default numbers). As in
the case of any bootstrap based analysis, 250 to 500 synthetic populations may be needed
to obtain reliable point and interval estimates.

ID var;

where var is the name of variable indicating a unique subject identifier. If this keyword is
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absent an id variable called OBS will be created in the output data set.

VAR varlist;

where varlist is a list of variables to be transferred to the output data set (of synthetic
populations). If this keyword is not specified, all variables will be transferred to the output
data set.

PRINT options;

can be used to print information used in the process for creating synthetic populations.

SEED number;

where number used to initialize the random number sequence for obtaining the draws. This
is an important feature to reproduce the same random number sequence at a future time
point.
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DESCRIBE

4.1 Introduction

The DESCRIBE module estimates population means, proportions, subgroup differences, and
contrasts and linear combinations of means and proportions. A Taylor Series Linearization
approach is used to obtain variance estimates for data derived from complex sample designs.
Multiple imputation analysis can be performed using the DESCRIBE module.

4.2 DESCRIBE Statements

4.2.1 Required or Standard Statements

DATAIN filename;

This keyword identifies the location and name of the data set to be analyzed. See Section
1.4.1 for more information about specifying a filename using the libname statement in SAS
or changing the working directory to match the location of the data set. To perform multiple
imputation analysis, more than one SAS data set can follow the DATAIN keyword in the
DESCRIBE module. When multiple data sets are specified, each is analyzed separately and
the inferences–estimates and variances–are combined using the usual multiple imputation
combining rules.

RUN;

This should be the last statement in the setup file.

4.2.2 Design Variables

The commands described in this section are relevant only for data from complex sample
surveys with stratification, clustering or weighting.

STRATUM variable name;
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variable name is the name of the stratum variable for the data from a complex survey.
No missing values are allowed for this variable. If the statement is missing then the sample
is assumed to be non-stratified.

CLUSTER variable name;

variable name is the Primary Sampling Unit (PSU) or Sampling Error Computing Unit
(SECU) variable for the data from a complex sample survey. No missing values are allowed
for the cluster variable. If this statement is missing then the sample is assumed to be
un-clustered.

WEIGHT variable name;

variable name is the survey weight variable. Survey weights are usually the product of
selection, non-response adjustments and post-stratification weights. No missing values are
allowed for the weight variable. If this statement is not included then the sample is assumed
to be self-weighted.

MODEL method;

MODEL indicates the variance estimation method to be used. Mult (Default) is useful
when there are multiple PSUs within a stratum, Pair employs the paired selection method,
and Diff employs the successive differences method. You can specify different methods for
each stratum. For example,

MODEL Pair(15,16,17) Diff(20,21,27);

will use paired differences for strata 15, 16, 17, the successive differences for strata 20, 21,27,
and Mult for the rest.

4.2.3 Analysis Statements

TABLE variable list;

This command will produce the weighted proportions and their standard errors for all levels
of a variable(s) in the variable list. Some examples are given below.

TABLE Race;

for the marginal distribution of the variable Race. Cross-tabulations may be indicated with
an asterisk, for example:

TABLE Race*Gender;

MEAN variable list;

Means, standard errors, and design effects are calculated for the list of variables listed under
variable list. For example,
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MEAN BMI Age;

will compute the means of BMI and Age.

BY list;

The BY keyword is used in conjunction with the TABLE or MEAN keyword. The analyses
will be performed for each level of the variable(s) specified in the BY statement. For instance,

TABLE Race;
BY Gender;

will produce the weighted proportion of each Race category for each of the two levels of
Gender. If variable Agecat is age in 3 categories then

TABLE Race;
BY Gender Agecat;

will produce weighted proportions of each Race category for each of the six combinations of
Gender and Agecat.

CONTRAST specifications;

CONTRAST is used in conjunction with the MEAN keyword to compare or estimate linear
combinations of cell means (continuous) or proportions (binary variables). For example,

MEAN Income;
CONTRAST Race;

will produce all the pairwise comparisons of mean Income defined by Race. If Race has three
categories then three pairwise comparisons will be produced. Another example is, MEAN

Income;
CONTRAST Race*Gender;

will produce comparisons of Income means for all combinations of Race and Gender.
Linear combinations of means can be estimated using the contrast features. Consider,

MEAN Income;
CONTRAST Race (0.5 0.5 -1);

will produce the estimate of the contrast (μ1 + μ2)/2 − μ3 of the means for three categories
of Race. (If Race has more than three levels then the above statement will produce an error
message). The statement,

CONTRAST Race (0.333333 0.333333 0.333333);

will produce an (approximate, due to rounding) estimate of the mean (μ1 + μ2 + μ3)/3.
Note that this is not technically a contrast. The contrast in IVEware can be viewed as a
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combination of contrast and estimate features in SAS, for example. You can also specify
complicated statements such as

MEAN Income;
CONTRAST Race(-1 0 1)*Gender(-1 1);

for contrasting the race differences for one gender group with the race differences for the
other. The contrast features can be useful in testing the significance of some pre-planned
contrasts in an ANOVA setting.

4.2.4 Missing Data Handling

There are four possible options for handling missing data. Analyze previously multiply
imputed data sets, perform multiple imputation analysis concurrently just for variables in
the analysis, skip subjects with missing values (that is, perform available case analysis) or
stop the analysis and exit.

For previously multiply imputed data sets, list all the data sets in the DATAIN state-
ment and omit the MDATA command. Other options with only one data set in the
DATAIN statement are given below.

MDATA instruction;

The keyword instruction options are (STOP/IMPUTE/SKIP). If MDATA is not included
in your setup, cases with missing data will be excluded from your analysis. This is equivalent
to using the SKIP instruction. When the instruction is STOP, the DESCRIBE module stops
if missing data are encountered in any analysis variables. If the keyword is IMPUTE then
the missing data will be imputed. All of the IMPUTE keywords can be used to specify the
models for imputation process.

4.2.5 Other commands

NOBS number;

NOBS indicates the number of observations to be used in the analysis. By default, all
observations in the data set will be used. Specification of NOBS to subset a large data set
might be useful while testing the setup file.

PRINT instruction;

Indicates the printout desired. The options are STANDARD (default) and DETAILS. When
a DESCRIBE procedure includes the IMPUTE missing-data option (see MDATA above)
the DETAILS keyword instructs IVEware to print the number and distribution of observed
values, imputed values, and combined observed and imputed values for each variable. If
the DESCRIBE procedure includes multiple imputations, the DETAILS keyword instructs
IVEware to print estimates and statistics for each imputed data set as well as combined
estimates and statistics across the imputed data sets. The standard DESCRIBE printout
does not include imputation results.
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TITLE text \n text;

Indicates the title(s) to be printed at the top of each page of the printout. A \n indicates
that the text that follows should be printed on the next line. For example,

TITLE This is the title on the first line \n This is the title on the second
line;
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REGRESS

5.1 Introduction

The REGRESS module fits linear, logistic, Poisson, polytomous and proportional hazards
regression models. All the keywords for the DESCRIBE models are also applicable here.
This chapter provides additional commands relevant for performing a regression analysis.
One main difference is that DESCRIBE uses the Taylor Series Linearization method for
variance estimation but REGRESS uses the Jackknife Repeated Replication technique to
estimate design-based variances (Kish and Frankel 1974).

5.2 REGRESS Statements

5.2.1 Models

DEPENDENT variable name;

This statement specifies the name of the dependent variable in the regression model. Depen-
dent variables are assumed to be continuous unless the CATEGORICAL keyword is included
as described below.

PREDICTOR variable list;

This specifies the right hand side of the regression model. Predictor variables are assumed to
be continuous unless they are defined as CATEGORICAL as described below. Interaction
terms can be specified by using the “*” notation. For example,

PREDICTOR Income Age Income*Age;

LINK model;

LINK defines the type of regression model to be fit. Specify Linear for fitting a multiple
linear regression model, Logistic for fitting a logistic (binary) or generalized logistic (poly-
tomous) regression model, Log for fitting a Poisson regression model for a count variable,
Tobit for fitting a tobit model or Phreg for fitting Proportional Hazards model (Cox model).
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CENSOR variable name (number);

variable name is the censoring variable, and number is the code indicating censoring. If
the number is omitted then, by default, 1 will be considered as the code indicating censored
observation. The Censor statement is required if the LINK is specified as Phreg. For
example,

LINK Phreg;
DEPENDENT Survivaltime;
CENSOR Died (0);

In this example, the outcome variable is Survivaltime and the censoring variable is Died
where Died=0 denotes censored observations.

CATEGORICAL variable list;

declares that the listed variables are to be treated as categorical. If a variable with k cat-
egories is listed on the CATEGORICAL and PREDICTOR statement then k -1 predictors
(dummies) will be included in the regression model. The category with the highest code
value will be the reference category. For logistic and multinomial logit models, the depen-
dent variable must also be listed in the variable list.

OFFSETS count-variable(offset-variable);

This statement is used to specify an offsets variable when fitting a Poisson regression model.
For example,

OFFSETS Injuries(Years);

will fit a model predicting the number for injuries occurring per year.

ID variable name;

Specifies the variable to be used as the unique subject identifier. This allows for linking the
PREDOUT file (see below) created by the REGRESS module to other files.

NOINTER;

This keyword will fit regression models without the intercept term.

ESTIMATES label: specification;

This is useful for estimating values of the dependent variable for a specific set of covariates
or testing hypotheses involving the estimated regression coefficients. For example, suppose
that the following regression model is fit:

Y = bo + b1x1 + b2x2 + b3x3

and we are interested in predicting Y for x1 = 1, x2 = 2 and x3 = 0. We can obtain the
predicted value and the 95% confidence interval by using the following statement:
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ESTIMATES Mylabel : Intercept (1) x1(1) x2(2);

Several estimates can be requested by separating them with the symbol: “/ ” .

5.2.2 Output files

The REGRESS module can be used to produce several plots and outputs for later process-
ing. The following are the descriptions of these features.

PLOT filename;

This keyword creates a series of diagnostic plots including residual, leverage, influence and
normal probability plots. The plots will be stored in the filename specified after the PLOT
keyword. The user can rely on the built-in graphics produced internally or use GNU Plot
by downloading this package and including the path in the XML settings file, see Chapter 9
for examples.

PREDOUT filename;

outputs a file containing the predicted values, their standard errors and 95% confidence
intervals. If an ID statement is included in the setup, an ID variable is also included in the
data set.

ESTOUT filename;

Outputs a file containing estimates and their variances-covariances.

REPOUT filename;

Outputs a file containing estimates for each replicate. Estimated regression coefficients are
provided for each combination of STRATUM, CLUSTER and BY variable.

5.2.3 Design Variables

The design features can be specified using the commands STRATUM, CLUSTER, and
WEIGHT as illustrated in the DESCRIBE chapter.

1. If the STRATUM, CLUSTER and WEIGHT variable are not specified, then a simple
random sample analysis will be performed.

2. If a design based analysis involves only a WEIGHT variable and no STRATUM or
CLUSTER variable, then a pseudo-stratification variable and a pseudo-cluster variable
should be used. When using pseudo variables, all observations in the data set should
have the same value for the pseudo STRATUM variable (e.g., 1), while each observation
should have a unique value on the pseudo CLUSTER variable (e.g., observation ID
number or SAS system variable N ). The pseudo variables should be created in the
data prior to performing the analysis. Example SAS data step code for creating a
pseudo STRATUM variable and a pseudo CLUSTER variable:
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LIBNAME MYLIB C:\MYINDIR;

DATA MYLIB.MYDATA;

SET MYLIB.MYDATA;

PSEUD_STRAT=1;

PSEUD_CLUST=_N_;

RUN;

Note that the inclusion of pseudo variables will increase the time REGRESS needs for
analysis.

TITLE text \n text;

Indicates the title(s) to be printed at the top of each page of the printout. A \n indicates
that the text that follows should be printed on the next line. For example,

TITLE This is the title on the first line \n This is the title on the second
line;
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SASMOD

6.1 Introduction

SASMOD is a SAS macro that provides a framework for performing analysis based upon
a collection of SAS procedures. SASMOD includes the ability to perform multiple imputa-
tion and/or analysis incorporating complex survey design features. Currently, the following
SAS procedures are available: CALIS, CATMOD, GENMOD, LIFEREG, MIXED, NLIN,
PHREG, and PROBIT. This particular macro executes user-specified SAS procedure com-
mands for each Jackknife Repeated Replication replicate and then combines the results to
compute the proper complex design sampling variance estimate. If multiple data sets are
specified as inputs, it performs the analysis for each data set separately and then combines
inferences using multiple imputation combining rules.

6.2 SASMOD Statements

The setup is similar to other modules except that multiple imputation must be performed
prior to invoking SASMOD. The multiple data sets can be specified in the DATAIN state-
ment. The allowable keywords are DATAIN, BY, STRATUM, CLUSTER, WEIGHT, and
TITLE.

SAS commands and optional statements can be used as appropriate for the procedure.
However, do not use statements that might lead to more than one model or different models in
different replicates or multiples. For example, more than one model statement or specifying
a stepwise model is not permitted. Examples of use of SASMOD are presented in later
chapters.
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SYNTHESIZE

7.1 Introduction

SYNTHESIZE uses the multivariate sequential regression approach to create full or par-
tial synthetic data sets to limit statistical disclosure (See Raghunathan, Reiter and Rubin
(2003), Reiter (2002) and Little, Liu and Raghunathan (2004) for more details). All item
missing values will also be imputed when creating synthetic data sets. However, DESCRIBE,
REGRESS and SASMOD modules cannot be used to analyze synthetic data sets as they
DO NOT implement the appropriate combining rules. See examples in later chapters for
demonstration of correct combining rules.

Except for the command IMPLICATES which specifies the number synthesized data sets
to be generated, SYNTHESIZE commands are the same as those for IMPUTE.

7.2 SYNTHESIZE Statements

7.2.1 Variable Types

SYNTHESIZE requires that all variables be defined by type. Six types of variables are
recognized by the IMPUTE module: continuous, categorical, count, mixed, transfer and
drop. If no variable types are specified, all variables will be assumed to be continuous. Vari-
able types should be declared before any BOUNDS, INTERACT, or RESTRICT statements.

CONTINUOUS variable list;

Variables declared as CONTINUOUS may take on any value on a continuum. For exam-
ple, income is a continuous variable. A normal linear regression model is used to synthesize
the missing values in these variables. You may want to transform the variable to achieve
normality and then use SYNTHESIZE on the transformed scale. After imputation you may
re-transform the variable back to its original form.
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CATEGORICAL variable list;

CATEGORICAL variables have values that represent discrete values. For example, gen-
der is a categorical variable. A logistic or generalized logistic model is used to impute missing
categorical values.

MIXED variable list;

Variables declared as MIXED are both categorical and continuous. In a mixed variable,
a value of zero is treated as a discrete category, while values greater than zero are considered
continuous. Alcohol consumption is an example of a mixed variable. A two stage model is
use to impute the missing values. First, a logistic regression model is used to impute zero
versus non-zero status. Then, conditional on imputing a non-zero status, a normal linear
regression model is used to impute non-zero values.

COUNT variable list;

COUNT variables have non-negative integer values. A Poisson regression model is used
to impute the missing values. The number of annual doctor visits is an example of a COUNT
variable.

DROP variable list;

Variables listed after the DROP keyword will be excluded from the imputation procedure
and will not appear in the imputed data set.

TRANSFER variable list;

Variables listed after the TRANSFER keyword are carried over to the imputed data set,
but are not imputed nor used as predictors in the imputation model. Transfer variables,
however, can be used in the RESTRICT and BOUNDS statements (see below). ID is an
example of a variable that you may want to treat as a transfer variable.

DEFAULT variable type;

Variable type can be Continuous, Categorical, Count, Mixed, Transfer or Drop. This
keyword declares that by default all the variables in the data set should be treated as the
selected variable type. The most efficient use of the DEFAULT statement is to declare the
most numerous variable type in your data set as the default type, eliminating the need to
type a long list of variables.

Optional Statements

RESTRICT variable(logical expression);
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This command is used to restrict the imputation of a variable to those observations that
satisfy the logical expression. For instance, suppose that the variable Yrssmoke indicates the
number of years an individual smoked, and the variable Smoke takes the value 1 for a cur-
rent smoker, 2 for a former smoker or 0 for someone who never smoked. Then the declaration:

RESTRICT Yrssmoke(Smoke=1,2);

will impute Yrssmoke values only for current and former smokers. It will automatically set
Yrssmoke equal to 0 for those who never smoked. Restrictions on more than one variable
may be combined as follows:

RESTRICT Yrssmoke(Smoke=1,2) Births(Gender=2) Income(Employed=1);

When the restriction is not met, the value of the restricted variable will be set to zero for
continuous variables and one higher than the highest observed code for categorical variables.

BOUNDS variable (logical expression);

This keyword is useful for restricting the range of values to be imputed for a variable.
For example,

BOUNDS Yrssmoke (> 0, <= Age-12);

will ensure that the imputed values for Yrssmoke are between > 0 and the individuals
Age minus 12. Smoking is assumed not to begin before the age of 12. Again, as in the
RESTRICT statement more than one variable can be included in the BOUNDS statement.
For example,

BOUNDS Yrssmoke (>0, <= Age-12) Numcig(>0);

Model-Building Statements The following commands are useful in the specification of the
imputation model.

INTERACT variable*variable;

This keyword enables the users to specify interaction terms to be include in the imputa-
tion regression model.

INTERACT Income*Income, Age*Race;

In this example, the imputation model for all the variables will include a square term for
Income and an interaction term of Age and Race.

Options for Stepwise Regression
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MAXPRED number; MAXPRED varlist2 (number);

Specifies the maximum number of predictor variables to be included as predictors in
the regression model. A step-wise regression procedure is used to select the best predictors
subject to the maximum number. Setting MAXPRED to a small number of predictors will
greatly reduce the computational time especially for a very large data sets but the imputa-
tions will not be fully conditional.

For example,

MAXPRED 5;

will include the five best predictor variables, that is, the five making the largest contri-
bution to the R-squared statistic. You can also restrict the number of predictors for selected
variables.

For example,

MAXPRED Income (7) Educ (3);

will limit the number of predictors of Income to the seven largest contributors to the R-
square, while the number of predictors of the variable Educ are limited to the three largest
contributors. For other variables, all variables will be used as predictors.

MINRSQD decimal;

Specifies the minimum marginal R-square for a stepwise regression, that is , minimum ini-
tial marginal R-square for a logistic regression, and minimum initial R-square for any model
being predicted by a polytomous regression. This option can reduce computation time. A
small decimal number like 0.005 would build very large regression models whereas 0.25 will
include a smaller number of predictors in the regression models. If neither MAXPRED nor
MINRSQD is set then no stepwise regression will be performed.

MINRSQD 0.01;

In the above example, only variables with minimum additional R-square of 0.01 or higher
will be included as predictors.

MAXLOGI number;

Specifies the maximum number of iterative algorithms to be performed in a logistic or
multi-logit regression model. The default is 50. This is useful if the Newton-Raphson algo-
rithm used in producing maximum likelihood estimates does not converge after 50 iterations.
This applies to the convergence criterion for the logistic, polytomous and Poisson regression
models. You can check whether you have such a non-convergence problem by inspecting the
log file (e.g., mysetup.log).
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MINCODI decimal;

Specifies the minimum proportional change in any regression coefficient to continue the
logistic regression iteration process. This applies to the convergence criterion for the logistic,
polytomous and Poisson regression models.

ITERATIONS number;

Specifies the number of cycles you would like the imputation program to carry out for
each variable and implicate/multiple. You can specify any number greater than or equal
to 2. Current investigations show that about 10 cycles are sufficient for most imputations.
You may want to experiment with several values and check the differences in the resulting
analysis.

IMPLICATES number;

Indicates the number of synthesized data sets to be created. By default, only a single
synthesized data set is generated.

MULTIPLES number;

You can perform imputation within the SYNTHESIZE procedure. The value of the Multi-
ples option indicates the number of imputations to be performed. By default, only a single
imputation is generated. Note that IMPUTE is processed prior to SYNTHESIZE. For each
multiple, a set of synthesized data sets are created based on the number of implicates speci-
fied. For example, if 2 multiples and 5 implicates are specified then 10 synthesized data sets
will be created; five for multiple 1 and 5 for multiple 2.

PERTURB instruction;

The keyword PERTURB followed by an instruction of COEF or SIR allows the user to
control perturbations of imputed values. By default, the IMPUTE module will perturb
model coefficients using a multivariate normal approximation of the posterior distribution
and the predicted values using the appropriate regression model conditional on the perturbed
coefficients. This is equivalent to using the COEF instruction. SIR uses the Sampling-
Importance-Resampling algorithm to generate coefficients from the actual posterior distri-
bution of parameters in the logistic, polytomous or Poisson regression models (See Rubin
1987a, Raghunathan and Rubin 1988, Raghunathan 1994, Gelman, et. al 1995). This is
appropriate in situations where normal approximation to the posterior distribution is not
appropriate.

SEED number;

Specifies a seed for the random draws from the posterior predictive distribution. This num-
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ber should be greater than zero. A zero seed will result in no perturbations of the predicted
values or the regression coefficients. If the SEED keyword is missing from the setup file,
then the seed will be determined by your computer’s internal clock.

NOBS number;

The NOBS option indicates the number of observations to be used in the analysis. By de-
fault, all observations in the data set will be used. You might use NOBS to subset a large
data set while testing your setup file.

OFFSETS count variables (offset variable) ;

This statement is used to specify an offsets variable when fitting a Poisson regression
model. For example,

OFFSETS Injuries(Years);

will fit a model predicting the number for injuries occurring per year.

PRINT instruction;

Indicates the printout desired. The options are STANDARD, DETAILS, COEF, and
ALL. For the STANDARD and DETAILS keywords instruct IVEware to print the number
and distribution of observed values, imputed/synthesized values, and combined observed
and imputed/synthesized values for each variable. The keyword COEF instructs additional
printing of the unperturbed and perturbed coefficients for each iteration of each imputa-
tion/synthesization. When the ALL keyword is used, in addition to the above, the coefficient
covariance matrix for each iteration of each multiple imputation is also printed.

A list of the variables used in the imputation/synthesizatio model is also printed with
columns indicating the number of observed cases and the number of imputed cases for each
of the variables. The third column of the variable list, labeled double counted, is to be used
for diagnostic purposes. This entry should be zero. A non-zero entry indicates that
the imputed value of a restricting variable has caused the observed value of a
restricted variable to be set to the restricted value (zero for continuous vari-
ables, one higher than the highest observed code for categorical variables; see
RESTRICT above). This usually indicates problems with the restriction or an inconsis-
tency in the observed data. In either case, you should run a data step before the imputation
to check the appropriateness of the restriction or correct the data inconsistency.

For example, if the variable SMOKE, indicating whether or not a respondent smokes,
is missing and the variable YRSMK, indicating the number of years the respondent has
smoked, is observed, then logically the respondent should be classified as a smoker. If
SMOKE is not given a value indicating the respondent is a smoker in a SAS data step prior
to imputation, the missing value could possibly be imputed to a nonsmoker value, causing
the IMPUTE/SYNTHESIZE command to change the observed value for YRSMK to zero.
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COMBINE

8.1 Introduction

The Combine data procedure allows the user to concatenate (stack) multiple data sets. The
data sets need not contain the same variables. Variables with a shared name will be treated
as the same variable in the combined data set. It is important that they have the same
value structure. If a variable does not appear in one of the data sets, it is treated as missing
data in the combined data set. The user may want to impute the missing values prior to
analyzing the combined data set using IMPUTE.

For example, suppose that data set 1 provides variables X and Y, data set 2 provides
variables X and Z and data set 3 provides variables Y and Z. COMBINE can be used to
concatenate the three data sets and multiply impute the missing values of X, Y and Z to
create complete data on all three variables. The multiply imputed combined data sets can
then be analyzed using the DESCRIBE, REGRESS or SASMOD modules.

8.2 COMBINE Statements

DATAIN filename;

This keyword identifies the location and name of the data set to be analyzed. See Section
1.4.1 for more information about specifying a filename using the libname statement in SAS
or changing the working directory to match the location of the data set. To combine multiple
data sets, more than one data set can follow the DATAIN keyword.

DATAOUT filename;

DATAOUT is used to name an output data set produced by the COMBINE procedure.

RUN;

This should be the last statement in the setup file.
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Chapter 9

IVEware and SAS

9.1 Introduction

Chapter 9 presents examples of common imputation and analytic tasks such as multiple
imputation of missing data using IMPUTE, use of BBDESIGN to create a complex sample
population data set, descriptive analysis of imputed data using DESCRIBE, linear regression
analysis with REGRESS, use of SASMOD (with SAS only) for categorical modeling, use of
SYNTHESIZE to create data sets that limit statistical disclosure, and use of COMBINE to
combine data from multiple sources.

All examples are run using the SRCShell editor with SAS method, that is, with code
submitted from an XML editor and enclosed with <sas> and </sas> tags to run IVEware
from within SAS.

National Comorbidity Survey-Replication data is used in many examples. The NCS-R
data is derived from a complex sample survey and thus, each example also demonstrates
how to correctly account for the design features. For more information on this data set, see

www.hcp.med.harvard.edu/ncs.
Other data sets used include NHANES 2011-2012 data, Health and Retirement Survey data
from 2006, 2008, 2010, and 2012, and Primary Cardiac Arrest data. For information on
data sets used in this chapter, see Raghunathan, Berglund and Solenberger (2017) or project
specific sites.

Each example includes a short description of the purpose of the example, and the code
used. The execution method used in these examples can be easily modified for use with other
software such as Stata, R, and SPSS (see Chapter 10 for selected examples of this approach).

9.2 IMPUTE Examples

This example uses NCS R data and begins with use of SAS PROC MI with the NIMPUTE=0
option to produce a missing data pattern grid. The grid allows easy visualization of the
missing data pattern, amount of missing data per variable and group means for each group
in the data set. This command calls on SAS directly and is not part of IVEware.

The second part of the example demonstrates use of IMPUTE and PUTDATA commands
to first impute missing data and create M=5 multiples or complete data sets. These imputed
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data sets are then extracted from a concatenated MI data set using PUTDATA and are
available for subsequent analysis.

The 5 imputed data sets extracted are then used as inputs for a number of descriptive and
regression analyses to come in later parts of this chapter. In those later examples, we will
be analyzing the imputed data sets and using IVEware built-in combining rules appropriate
for analysis of multiply imputed data sets as well correct variance estimation for complex
sample data.

Syntax

<sas name="Impute Example">

libname d ’P:\IVEware 0.3 documentation 2016\SAS XML Examples’;

/* check missing data pattern using SAS PROC MI */

title "Missing Data Pattern from SAS PROC MI" ;

proc mi data=d.ncsr_ex1 nimpute=0 ;

run ;

/* Multiple Imputation using %impute */

<impute name="MI Using IVEware">

title Multiple Imputation Using %impute ;

datain d.ncsr_ex1 ;

dataout d.impute_mult1;

default categorical;

continuous bmi intwage ncsrwtsh sestrat ;

transfer caseid ;

iterations 5;

multiples 5;

seed 2001;

run;

</impute>

/* Extract remaining 4 data sets */

<putdata name="MI Using IVEware" mult="2" dataout="d.impute_mult2" />

<putdata name="MI Using IVEware" mult="3" dataout="d.impute_mult3" />

<putdata name="MI Using IVEware" mult="4" dataout="d.impute_mult4" />

<putdata name="MI Using IVEware" mult="5" dataout="d.impute_mult5" />

</sas>

Selected Output

Multiple Imputation Using %impute

Imputation 1

Variable Observed Imputed Double counted

DSM_GAD 9282 0 0

REGION 9282 0 0

MAR3CAT 9282 0 0

ED4CAT 9282 0 0

NCSRWTSH 9282 0 0

SEX 9282 0 0

SESTRAT 9282 0 0

SECLUSTR 9282 0 0

bmi 8285 997 0

mde 9112 170 0

sexf 9282 0 0

sexm 9282 0 0

ald 9282 0 0

racecat 9282 0 0

ag4cat 9282 0 0

intwage 9282 0 0
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9.2.1 IMPUTE Example with ABB Option

This example uses the ABB option with the IMPUTE command, with the PCA data set.
This option permits use of an Approximate Bayesian Bootstrap approach for the imputation
model/variable called REDTOT, representing red blood cell total counts.

/* Impute Example with ABB using PCA and Omega 3 Fatty Acids Data */

<sas name="IMPUTE with ABB Example">

/* Set libnames */

libname d1 ’P:\IVEware_and_MI_Applications_Book\DataSets\PCA and Omega 3 Fatty Acids Data’ ;

libname dout ’P:\IVEware 0.3 documentation 2016\SAS XML Examples’;

<impute name="Impute with ABB Option Using PCA and Omega3 Data">

datain d1.test;

continuous AGE NUMCIG YRSSMOKE FATINDEX DHA_EPA REDTOT WGTKG TOTLKCAL HGTCM ;

categorical CASECNT GENDER RACE3 HYPER DIAB SMOKE FAMMI EDUSUBJ3 CHOLESTH ;

mixed CAFFTOT ALCOHOL3 ;

transfer STUDYID ;

/* Declare ABB for REDTOT, assume non-normal residuals */

ABB redtot ;

restrict NUMCIG(smoke=2,3) YRSSMOKE(smoke=2,3) ;

bounds NUMCIG(>0) YRSSMOKE(>0, <age-12) DHA_EPA(>0) REDTOT(>0) CAFFTOT(>0) TOTLKCAL(>0) ALCOHOL3(>0);

ITERATIONS 3;

MULTIPLES 5;

SEED 2001;

DATAOUT dout.impute_ABB all ;

run;

</impute>

/* Examine Output Data Set*/

proc means data=dout.impute_ABB ;

class _mult_ ;

var redtot ;

run ;

</sas>

9.2.2 IMPUTE Example with GH Option

Section 9.2.2 demonstrates use of the GH (Tukey’s GH) option for the imputation model/REDTOT
variable, again using the PCA data set. Like the ABB method, this method can be used to
address situations where linear regression is not appropriate.

/* Impute Example with GH using PCA and Omega 3 Fatty Acids Data */

<sas name="IMPUTE with GH Example">

/* Set libnames */

libname d1 ’P:\IVEware_and_MI_Applications_Book\DataSets\PCA and Omega 3 Fatty Acids Data’ ;

libname dout ’P:\IVEware 0.3 documentation 2016\SAS XML Examples’;

<impute name="Impute with GH Option Using PCA and Omega3 Data">

datain d1.test;

continuous AGE NUMCIG YRSSMOKE FATINDEX DHA_EPA REDTOT WGTKG TOTLKCAL HGTCM ;

categorical CASECNT GENDER RACE3 HYPER DIAB SMOKE FAMMI EDUSUBJ3 CHOLESTH ;

mixed CAFFTOT ALCOHOL3 ;

GH redtot ;

transfer STUDYID ;

restrict NUMCIG(smoke=2,3) YRSSMOKE(smoke=2,3) ;

bounds NUMCIG(>0) YRSSMOKE(>0, <age-12) DHA_EPA(>0) REDTOT(>0) CAFFTOT(>0) TOTLKCAL(>0) ALCOHOL3(>0);

ITERATIONS 3;

MULTIPLES 5;
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SEED 2001;

DATAOUT dout.impute_gh all ;

run;

</impute>

/* Examine Output Data Set*/

proc means data=dout.impute_gh ;

class _mult_ ;

var redtot ;

run ;

</sas>

9.3 BBDESIGN Examples

Section 9.3 uses NHANES 2011-2012 adult data to demonstrate examples of the BBDESIGN
command.

<sas name="BBDesign Example">

/* BBDesign Example, Uses NHANES 2011-2012 DATA with

BBdesign and Impute */

libname d ’P:\IVEware_and_MI_Applications_Book\Chapter12Simulations

\Examples\Revised BBDESIGN 12feb2018’;

* gather NHANES data where age >=18 and MEC weight > 0

(participated in MEC examination) ;

data nhanes1112_sub_20jan2017 ;

set d.nhanes1112_sub_4nov2015 ;

if age >=18 and wtmec2yr > 0 ;

drop marcat bpxsy1 - bpxsy4 bp_cat pre_hibp bpxdi1 - bpxdi4

dmdmartl irregular ;

run ;

proc means nolabels n nmiss mean min max ;

weight wtmec2yr ;

run ;

/* Use BBDesign command to prepare data set using complex

sample design variables and MEC weight:

25 implicate data sets are generated:

5 Bootstrap sample of clusters

5 FPBB using Weighted Polya posterior within each

bootstrap sample

*/

<bbdesign name="BBdesign">

datain nhanes1112_sub_20jan2017 ;

dataout d.bbdesignout ;

stratum sdmvstra ;

cluster sdmvpsu ;

weight wtmec2yr ;

csamples 5 ;

wsamples 5 ;

seed 2001;

run;

</bbdesign>

/* Confirm that there are 10 (sample inflation factor)*5,615

(original n) *25 (implicates)= 1,403,750 */

proc freq data=d.bbdesignout ;

tables _impl_ ;

run ;
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Next, missing data is addressed via use of the IMPUTE command with M=5. Since
the data set has already been prepared to represent the population of interest, we impute
missing data values for total cholesterol, family income/poverty ratio, BMI, and education
within each implicate. Once this is complete, data analysis can be done using simple random
sample assumptions, that is, without use of complex sample design variables or probability
weights.

/* impute missing data within each of 25 implicates

using M=5 and 5 iterations */

<impute name="Impute_BBDesign"> ;

datain d.bbdesignout ;

dataout d.imputed_samples all ;

default continuous ;

transfer ridstatr seqn ag1829 ag3044 ag4559 ag60 mex

othhis white black other _impl_ _obs_ ;

categorical riagendr ridreth1 edcat ;

bounds indfmpir (>= 0, <=5) bmxbmi (>=13, <=80)

lbxtc (>=59, <=523) ;

by _impl_;

seed 2016 ;

multiples 5;

iterations 5;

run ;

</impute> ;

Two analyses are now demonstrated; one using a linear regression model and another using
logistic regression with combining for both models. This is needed because the default
combining rules implemented in REGRESS and PROC MIANALYZE are different from the
FPBB rules, see Raghunathan (2016) or Zhou, Elliot and Raghunathan (2016b) for details.
The linear regression example uses total cholesterol predicted by gender, BMI, and the ratio
of family income to poverty thresholds. For the logistic regression example, a binary outcome
of obesity status (coded 1 if BMI >=30, and 0 otherwise) is predicted by age, gender and
the income/poverty ratio.

/* Prepare the imputed synthetic populations for analysis */

data synthpops;

set d.imputed_samples;

/*

Create 3 indices S, B, L using the fact that wsamples=5 in

the BBDESIGN code above and given the relationships:

****************************************

indexL=_mult_;

indexS=floor((_impl_-1)/wsamples)+1;

indexB=_impl_-(indexS-1)*wsamples;

****************************************

*/

indexL=_mult_;

indexS=floor((_impl_-1)/5)+1;

indexB=_impl_-(indexS-1)*5;

run ;

/* Save imputed data */

data d.imputed_synthpops ;

set synthpops ;

male=(riagendr=1) ;
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run ;

proc sort data=d.imputed_synthpops;

by indexS indexB indexL;

run ;

/* Estimate of the population mean of lbxtc and its

variance involves 2 steps:

Step 1: Average over IndexB and IndexL for each level

of IndexS */

proc means data=d.imputed_synthpops noprint mean;

var lbxtc;

by indexS;

output out=step1 mean=lbxtcbar;

run ;

/* Step 2: Compute the mean and variance across the

S synthetic populations */

proc means data=step1 mean var ;

var lbxtcbar;

run ;

/* Linear Regression analysis using PROC REG with

imputed synthetic populations*/

proc reg data=d.imputed_synthpops;

by indexS indexB indexL;

model lbxtc = bmxbmi male indfmpir ;

ods output parameterestimates=outparms ;

run ;

title "Print Out from Linear Regression" ;

proc print data=outparms ;

run ;

/* prepare combined estimates and variance using

two data steps*/

proc means data=outparms mean ;

var estimate ;

where variable =’Intercept’ ;

by indexs ;

output out=step1_0 mean=bobar ;

run ;

proc print data=step1_0 ;

run ;

proc means data=outparms mean ;

var estimate ;

where variable =’BMXBMI’ ;

by indexs ;

output out=step1_1 mean=b1bar ;

run ;

proc print data=step1_1 ;

run ;

proc means data=outparms mean ;

var estimate ;

where variable =’male’ ;

by indexs ;

output out=step1_2 mean=b2bar ;

run ;

proc print data=step1_2 ;

run ;

proc means data=outparms mean ;
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var estimate ;

where variable =’INDFMPIR’ ;

by indexs ;

output out=step1_3 mean=b3bar ;

run ;

proc print data=step1_3 ;

run ;

* Merge temp data sets into 1 for combining ;

data step1_all ;

merge step1_0 step1_1 step1_2 step1_3 ;

by indexs ;

run ;

proc print data=step1_all ;

run ;

* use merged data above for final step ;

proc means data=step1_all mean var noprint;

var bobar b1bar b2bar b3bar;

output out=step2 mean=intercept bmxbmi male indfmpir

var=vintercept vbmxbmi vmale vindfmpir;

run ;

proc print data=step2 ;

run ;

/* Combine results for parameter estimates from above */

data combine_linear ;

set step2;

df=5-1 ; *Min(S-1,C-H);

tvalue=quantile(’T’,0.975,df);

/* Create arrays for estimate variance se and

lower/upper CI */

array estimate[4] intercept bmxbmi male indfmpir;

array variance[4] vintercept vbmxbmi vmale vindfmpir;

array se[4] se_intercept se_bmxbmi se_male se_indfmpir;

array lower95[4] l95_intercept l95_bmxbmi

l95_male l95_indfmpir;

array upper95[4] u95_intercept u95_bmxbmi

u95_male u95_indfmpir;

do i=1 to 4;

se[i]=sqrt((1+1/5)*variance[i]); * Note that

denominator must match the number used for

"csamples" in the code ;

lower95[i]=estimate[i]-tvalue*se[i];

upper95[i]=estimate[i]+tvalue*se[i];

end;

drop i;

run ;

options nodate nonumber ;

proc print data=combine_linear ;

title "Combined Estimates, SE, Lower and Upper CI from

Linear Regression" ;

var intercept se_intercept l95_intercept

u95_intercept

bmxbmi se_bmxbmi l95_bmxbmi u95_bmxbmi

male se_male l95_male u95_male indfmpir se_indfmpir

l95_indfmpir u95_indfmpir

;

run ;

**********************************************************;



62 CHAPTER 9. IVEWARE AND SAS

/* Logistic Regression analysis using PROC LOGISTIC,

outcome is obese predicted by male, family income to poverty

and age categories*/

data imputed_synthpops2 ;

set d.imputed_synthpops ;

if bmxbmi >=30 then obese = 1 ; else obese=0 ;

run ;

/*predict probability of being obese by gender and age in

categories and family income to poverty ratio */

proc logistic data=imputed_synthpops2;

by indexS indexB indexL;

model obese (event=’1’) = male indfmpir ag3044 ag4559 ag60 ;

ods output parameterestimates=outparms_log ;

run ;

proc print data=outparms_log ;

run ;

/* prepare combined estimates and variance using

two data steps*/

/* Create separate mean by IndexS for each variable */

proc means data=outparms_log mean ;

var estimate ;

where variable =’Intercept’ ;

by indexs ;

output out=step1_0 mean=bobar ;

run ;

proc print data=step1_0 ;

run ;

proc means data=outparms_log mean ;

var estimate ;

where variable =’male’ ;

by indexs ;

output out=step1_1 mean=b1bar ;

run ;

proc print data=step1_1 ;

run ;

proc means data=outparms_log mean ;

var estimate ;

where variable =’INDFMPIR’ ;

by indexs ;

output out=step1_2 mean=b2bar ;

run ;

proc print data=step1_2 ;

run ;

proc means data=outparms_log mean ;

var estimate ;

where variable =’ag3044’ ;

by indexs ;

output out=step1_3 mean=b3bar ;

run ;

proc print data=step1_3 ;

run ;

proc means data=outparms_log mean ;

var estimate ;

where variable =’ag4559’ ;

by indexs ;

output out=step1_4 mean=b4bar ;
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run ;

proc print data=step1_4 ;

run ;

proc means data=outparms_log mean ;

var estimate ;

where variable =’ag60’ ;

by indexs ;

output out=step1_5 mean=b5bar ;

run ;

proc print data=step1_5 ;

run ;

data step1_all_log ;

merge step1_0 step1_1 step1_2 step1_3 step1_4 step1_5;

by indexs ;

run ;

proc print data=step1_all_log ;

run ;

/* Prepare combined estimates and variance

using two data steps*/

proc means data=step1_all_log mean var ;

var bobar b1bar b2bar b3bar b4bar b5bar;

output out=step2_log mean=intercept male indfmpir

ag3044 ag4559 ag60

var=vintercept vmale vindfmpir vag3044 vag4559 vag60;

run ;

/* Combine results for logistic regression */

data combine_log ;

set step2_log ;

df=5-1 ; *Min(S-1,C-H);

tvalue=quantile(’T’,0.975,df);

/* Create arrays to the calculations */

array estimate[6] intercept male indfmpir ag3044

ag4559 ag60;

array variance[6] vintercept vmale vindfmpir vag3044

vag4559 vag60;

array se[6] se_intercept se_male se_indfmpir

se_ag3044 se_ag4559 se_ag60 ;

array lower95[6] l95_intercept l95_male l95_indfmpir

l95_ag3044 l95_ag4559 l95_ag60;

array upper95[6] u95_intercept u95_male u95_indfmpir

u95_ag3044 u95_ag4559 u95_ag60;

array or[6] or_intercept or_male or_indfmpir

or_ag3044 or_ag4559 or_ag60;

do i=1 to 6;

se[i]=sqrt((1+1/5)*variance[i]);

or[i]=exp(estimate[i]);

lower95[i]=exp(estimate[i]-tvalue*se[i]);

upper95[i]=exp(estimate[i]+tvalue*se[i]);

end;

drop i;

run ;

proc print data=combine_log ;

title "Combined Estimates from Logistic Regression" ;

run ;

</sas>
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9.4 DESCRIBE Example

The DESCRIBE example, using NCS-R data, presents a descriptive analysis of age at inter-
view and body mass index with a gender contrast. The example uses the 5 imputed data sets
from IMPUTE along with MI combining rules and design-based variance estimation using
the default TSL method. Use of the STRATUM, CLUSTER, and WEIGHT statements
declare the complex sample design variables and weight to the software. The CONTRAST
statement requests a linear contrast of mean age at interview and Body Mass Index by gen-
der. The DESCRIBE command with a mean statement produces a means analysis of age at
interview and BMI. Missing data is excluded, resulting in a complete case analysis.

<sas name="DESCRIBE Example using Imputed Data Sets">

libname d "P:\IVEware 0.3 documentation 2016\SAS XML Examples";

/* Descriptive Analysis of Age at Interview and BMI, Missing Data Imputed by IVEware */

<describe name="DESCRIBE Example Using Imputed

Data Sets with Design Adjusted Imputed Descriptive Analysis of Age and BMI">

title MI Design-based Description;

datain d.impute_mult1 d.impute_mult2 d.impute_mult3 d.impute_mult4 d.impute_mult5 ;

stratum sestrat;

cluster seclustr;

weight ncsrwtsh ;

model mult;

mean intwage bmi;

contrast sexf;

run;

</describe>

</sas>

9.5 REGRESS Example

The REGRESS example again uses the previously imputed NCS-R data sets as inputs. This
example regresses body mass index (BMI) on lifetime Major Depressive Episode, an indicator
of being female, and age at interview. The default variance estimation method in REGRESS
is the Jackknife Repeated Replication method. Use of the PLOTS statement will produce
a number of diagnostic plots with a .png extension. Note that the gnuplot software must
be included in the ”settings” file (stored in the SRCLIB folder where software installed) for
this to work correctly. One diagnostic plot is included in the selected output given below.

<sas name="REGRESS Example using Imputed Data Sets">

libname d "P:\IVEware 0.3 documentation 2016\SAS XML Examples";

/* Analyze Five Previously Imputed Data Sets using Linear Regression with REGRESS*/

/* Example uses Complex Sample Design Variables and Diagnostic Plots */

<regress name="Linear Regression Example">

title Linear Regression using REGRESS with Imputed Data Sets;

datain d.impute_mult1 d.impute_mult2 d.impute_mult3 d.impute_mult4 d.impute_mult5 ;

estout impute_regress;

stratum sestrat;

cluster seclustr;

weight ncsrwtsh;

dependent bmi;

predictor mde sexf intwage ;

link linear ;

plots outplots ;

run;
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</regress>

</sas>

Selected Regression Output

All imputations

Valid cases 9282

Sum weights 9282.000152

Degr freedom 26.42925062

Sum of squares:

Model 3954.942524

Error 299501.0663

Total 303456.0088

R-square 0.01303

F-value 0.08725

P-value 0.98565

Variable Estimate Std Error T Test Prob > |T|

Intercept 25.9222187 0.2549001 101.69559 0.00000

mde 0.8287332 0.1234398 6.71366 0.00000

sexf -0.6898597 0.1395496 -4.94347 0.00004

intwage 0.0290391 0.0049550 5.86059 0.00000

Variable Estimate 95% Confidence Interval

Lower Upper

Intercept 25.9222187 25.3986774 26.4457600

mde 0.8287332 0.5751993 1.0822672

sexf -0.6898597 -0.9764816 -0.4032378

intwage 0.0290391 0.0188620 0.0392162

Variable Design SRS % Diff

Effect Estimate SRS v Est

Intercept 1.48293 26.3002986 1.45852

mde 0.60113 0.8344926 0.69496

sexf 1.17056 -0.6735030 -2.37102

intwage 1.58580 0.0231927 -20.13297
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9.6 SASMOD Example

The SASMOD command is available with IVEware and SAS only. This command is based
upon the Jackknife Repeated Replication method for variance estimation and can be used
with many SAS procedures (see previous sections of this chapter). In this example, PROC
CATMOD is used to execute an MI and design-based log-linear model. The model examines
relationships between gender and Major Depressive Episode, using the 5 previously imputed
NCS-R data sets as input.

<sas name="SASMOD with PROC CATMOD">

libname d ’P:\IVEware 0.3 documentation 2016\SAS XML Examples’;

/* Analyze 5 Imputed Data Sets with JRR Variance Estimation PROC CATMOD for Log-Linear Model */

<sasmod name="SASMOD for Log-Linear Model with PROC CATMOD">

title SASMOD Example ;

datain d.impute_mult1 d.impute_mult2 d.impute_mult3 d.impute_mult4 d.impute_mult5 ;

estout modexam;

cluster seclustr ;

stratum sestrat ;

weight ncsrwtsh;

/* SAS statements begin here */

proc catmod;

model mde*sexf =_response_ / pred=freq;

loglin mde sexf mde*sexf ;

run;

</sasmod>

</sas>

Selected Output
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All imputations

Valid cases 9282

Sum weights 9282.000152

Degr freedom Infinite

-2 LogLike 21833.80757

Variable Estimate Std Error Wald test Prob > Chi

mde 0 0.7346635 0.0173232 1798.53648 0.00000

sexf 0 -0.1223741 0.0115333 112.58311 0.00000

mde*sexf 0 0 0.1283257 0.0168590 57.93785 0.00000

Variable Estimate 95% Confidence Interval

Lower Upper

mde 0 0.7346635 0.7006693 0.7686577

sexf 0 -0.1223741 -0.1450064 -0.0997418

mde*sexf 0 0 0.1283257 0.0952424 0.1614090

9.7 SYNTHESIZE Examples

9.7.1 Fully Synthesized Data Set

The first SYNTHESIZE example demonstrates multiple imputation of missing data followed
by synthesis of each variable in the Primary Cardiac Arrest data set. In the code below,
we request 5 multiple imputations with 5 implicates or synthesized data sets per imputation
multiple. Use of similar syntax as from IMPUTE is utilized along with the SYNTHESIZE
statement to declare the variables to be synthesized. The imputation is done before the
synthesis, therefore each of 5 imputation multiples contains 5 synthesized data sets for sub-
sequent analysis. Two key variables are created during this process: IMPL with values of
1,2,3,4,5 denoting synthesized data sets 1-5, and MULT with values of 1,2,3,4,5 denoting
imputations. The final part of this example demonstrates correct combining rules for fully
synthesized and imputed data (Raghunathan (2015), page 168).

/* Synthesize Example Using PCA and Omega 3 Fatty Acids Data */

<sas name="SYNTHESIZE Example">

/* Set libnames */

libname d1 ’P:\IVEware_and_MI_Applications_Book\DataSets\PCA and Omega 3 Fatty Acids Data’ ;

libname dout ’P:\IVEware 0.3 documentation 2016\SAS XML Examples’;

<synthesize name="Synthesize All Variables Using PCA and Omega3 Data">

datain d1.test;

continuous AGE NUMCIG YRSSMOKE FATINDEX DHA_EPA REDTOT WGTKG TOTLKCAL HGTCM ;

categorical CASECNT GENDER RACE3 HYPER DIAB SMOKE FAMMI EDUSUBJ3 CHOLESTH ;

mixed CAFFTOT ALCOHOL3 ;

transfer STUDYID ;

synthesize CASECNT AGE GENDER RACE3 HYPER DIAB SMOKE NUMCIG YRSSMOKE FATINDEX

FAMMI EDUSUBJ3 DHA_EPA REDTOT CHOLESTH CAFFTOT WGTKG TOTLKCAL ALCOHOL3 HGTCM ;

restrict NUMCIG(smoke=2,3) YRSSMOKE(smoke=2,3) ;

bounds NUMCIG(>0) YRSSMOKE(>0, <age-12) DHA_EPA(>0) REDTOT(>0)

CAFFTOT(>0) TOTLKCAL(>0) ALCOHOL3(>0);

ITERATIONS 2;

MULTIPLES 5;

SEED 2001;

IMPLICATES 5;

DATAOUT dout.synthesize all ;

run;
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</synthesize>

/* Examine Contents of Output Data Set*/

proc contents data=dout.synthesize ;

run ;

data synthesized ;

set dout.synthesize ;

* use implicates 1-5 only ;

if _impl_ >=1 then _imputation_= cat(_mult_, _impl_) ;

run ;

proc freq ;

tables _mult_*_impl_ _imputation_ ;

run ;

proc sort data=synthesized ;

by _imputation_ ;

run ;

/* Obtain mean kcalories per day by _imputation_ and then combine using correct rules for synthesized data*/

proc means data=synthesized (where=(_imputation_ ne ’ ’ )) mean stderr ;

var totlkcal ;

by _imputation_ ;

ods output summary=outstat ;

run ;

proc print data=outstat ;

run ;

proc sql ;

create table outstat1

as select *, mean(totlkcal_mean) as qbar, mean(totlkcal_stderr*totlkcal_stderr) as ubar

from outstat ;

proc sql ;

create table outstat2

as select *, sum((totlkcal_mean - qbar)**2)/24 as btwvar

from outstat1

/* Combining rules for fully imputed and synthesized data*/

data final ;

set outstat2 ;

if _n_=1 ;

syn_estimate=qbar ;

syn_variance=ubar ;

syn_se=sqrt(syn_variance) ;

btw=btwvar ;

total_syn_var=((1+1/25)*btwvar) - ubar ;

proc print data=final ;

var syn_estimate syn_se syn_variance btwvar total_syn_var;

run ;

Results from Fully Synthesized Data Set
Parameter Mean SE Total Variance

Total Kilocalories 1822.24 40.44 106.10

9.7.2 Partially Synthesized Data Set

The second SYNTHESIZE example demonstrates how to synthesize just selected ”sensitive”
variables, again using the PCA data set. As a reminder, multiple imputation is done before
synthesis, therefore each of 3 imputation multiples contains 5 synthesized data sets. Two
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key variables are created during this process: IMPL with values of 1,2,3,4,5 denoting im-
plicates and MULT with values of 1,2,3 denoting imputations. The syntax below includes
imputation and synthesis followed by an example of application of correct combining rules
for partially synthesized data (Raghunathan, (2015) page 168).

/* Partial Synthesize Example Using PCA and Omega 3 Fatty Acids Data */

<sas name="SYNTHESIZE Partial Example">

/* Set libnames */

libname d1 ’P:\IVEware_and_MI_Applications_Book\DataSets\PCA and Omega 3 Fatty Acids Data’ ;

libname dout ’P:\IVEware 0.3 documentation 2016\SAS XML Examples’;

<synthesize name="Synthesize Selected Variables Using PCA and Omega3 Data">

datain d1.test;

continuous AGE NUMCIG YRSSMOKE FATINDEX DHA_EPA REDTOT WGTKG TOTLKCAL HGTCM ;

categorical CASECNT GENDER RACE3 HYPER DIAB SMOKE FAMMI EDUSUBJ3 CHOLESTH ;

mixed CAFFTOT ALCOHOL3 ;

transfer STUDYID ;

/* synthesize select health and personal information variables */

synthesize CASECNT HYPER DIAB FATINDEX FAMMI DHA_EPA REDTOT WGTKG HGTCM ;

restrict NUMCIG(smoke=2,3) YRSSMOKE(smoke=2,3) ;

bounds NUMCIG(>0) YRSSMOKE(>0, <age-12) DHA_EPA(>0) REDTOT(>0) CAFFTOT(>0) TOTLKCAL(>0) ALCOHOL3(>0);

ITERATIONS 2;

MULTIPLES 3;

SEED 2001;

IMPLICATES 5;

DATAOUT dout.synthesize_partial all ;

run;

</synthesize>

proc sort data=dout.synthesize_partial ;

by _mult_ _impl_ ;

run ;

data synthesized ;

set dout.synthesize_partial ;

* use implicates 1-5 only ;

if _impl_ >=1 then _imputation_= cat(_mult_, _impl_) ;

run ;

proc freq ;

tables _mult_*_impl_ _imputation_ ;

run ;

proc sort data=synthesized ;

by _imputation_ ;

run ;

/* Obtain mean fatindex by _imputation_ and then combine using correct rules for synthesized data*/

proc means data=synthesized (where=(_imputation_ ne ’ ’ )) mean stderr ;

var fatindex ;

by _imputation_ ;

ods output summary=outstat ;

run ;

proc print data=outstat ;

run ;

proc sql ;

create table outstat1

as select *, mean(fatindex_mean) as qbar, mean(fatindex_stderr*fatindex_stderr) as ubar

from outstat ;

proc sql ;

create table outstat2

as select *, sum((fatindex_mean - qbar)**2) as sumdiffs, calculated sumdiffs/14 as btwvar

from outstat1 ;
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/* Combining rules for fully imputed and partially synthesized data are different from fully synthesized data*/

data final ;

set outstat2 ;

if _n_=1 ;

syn_estimate=qbar ;

syn_variance=ubar ;

syn_se=sqrt(syn_variance) ;

/* total variance is ubar + btwvar/m */

total_partialsyn_var=ubar + btwvar/15 ;

proc print data=final ;

var syn_estimate syn_se syn_variance btwvar total_partialsyn_var;

run ;

</sas>

Results from Partially Synthesized and Imputed Data Sets
Parameter Mean SE Total Variance
FatIndex 21.56 0.14 0.02

9.8 COMBINE Example

The COMBINE example joins four waves of Health and Retirement Survey data from 2006,
2008, 2010 and 2012. Though the data sets have the same variable names and values, each
has manufactured missing data on some variables. For example, the HRS 2006 data has
no observed data on three variables: DIABETES, ARTHRITIS, and SELFRHEALTH, HRS
2008 data is completely missing on DIABETES and ARTHRITIS but has observed data on
SELFRHEALTH, and so on. In addition, other variables such as marital status (MARCAT)
have small amounts of missing data in some or all waves of data. This example demonstrates
a three step process: 1. ”stacking” the data using COMBINE, 2. imputing the missing data
in the combined data set using IMPUTE, and 3. use of DESCRIBE to perform MI and
design-based descriptive analysis of arthritis by year.

<sas name="COMBINE Example using 4 Waves of HRS Data">

libname d "P:\IVEware_and_MI_Applications_Book\Chapter2DataSources";

/* COMBINE Example Using HRS 2006 2008 2010 and 2012 Data */

<combine name="COMBINE Example">

datain d.hrs2006_27jul2016 d.hrs2008_27jul2016 d.hrs2010_27jul2016 d.hrs2012_27jul2016 ;

dataout d.combined_hrs_2006_2012 ;

run;

</combine>

/* Use SAS to Examine Contents of Combined Data */

proc contents data=d.combined_hrs_2006_2012 ;

run ;

/* Examine Means of Combined Data */

proc means n nmiss mean min max data=d.combined_hrs_2006_2012 ;

class yr ;

run ;

/* Use IMPUTE to impute missing data */

<impute name="Impute_Post_COMBINE">

datain d.combined_hrs_2006_2012 ;

dataout d.impute_mult1;
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default categorical;

continuous stratum age wgt;

transfer hhid pn ;

iterations 5;

multiples 5;

seed 2016 ;

run;

</impute>

/* Extract remaining 4 data sets */

<putdata name="Impute_Post_combine" mult="2" dataout="d.impute_mult2" />

<putdata name="Impute_Post_combine" mult="3" dataout="d.impute_mult3" />

<putdata name="Impute_Post_combine" mult="4" dataout="d.impute_mult4" />

<putdata name="Impute_Post_combine" mult="5" dataout="d.impute_mult5" />

/* Use Imputed Data Sets for Descriptive Analysis*/

<describe name="Descriptive Analysis of Combined and Imputed Arthritis by Year">

datain d.impute_mult1 d.impute_mult2 d.impute_mult3 d.impute_mult4 d.impute_mult5 ;

stratum stratum ;

cluster secu;

weight wgt ;

table arthritis ;

by yr ;

run;

</describe>

</sas>

Proportion of Arthritis by Year, Based on Combined, Imputed HRS Data
Outcome Year Mean SE

Diagnosis of Arthritis 2006 0.548 0.007
” 2008 0.567 0.008
” 2010 0.532 0.006
” 2012 0.550 0.008



Chapter 10

IVEware and Stata, SPSS, and R

10.1 Introduction

Chapter 10 presents syntax to replicate the examples in Chapter 9, again using IVEware
with the SRCware Shell editor with Stata, SPSS and R. In this chapter, just the IVEware
command syntax is presented while subsequent coding and analyses are left to the analyst
to code in a software of choice. Though the software with IVEware differs, the IVEware
syntax and resultant output should match the Chapter 9 examples.

10.2 IMPUTE Example, IVEware and Stata

The first example demonstrates use of IVEware and Stata with IMPUTE, using NCS-R
data. After imputation, the 5 multiples are stored in data sets called ”impute mult1-
impute mult5”. By default, these are saved in Stata .dta format and can be used in additional
analyses.

<stata name="Impute Example with Stata">

use "P:\IVEware_and_MI_Applications_Book\Chapter3\Examples\Stata\ncsr_ex1.dta"

/* Multiple Imputation*/

<impute name="Impute">

title Multiple Imputation Using IMPUTE ;

datain ncsr_ex1 ;

dataout impute_mult1;

default categorical;

continuous bmi intwage ncsrwtsh sestrat;

transfer caseid;

iterations 5;

multiples 5;

seed 2001;

run;

</impute>

/*Extract remaining 4 data sets*/

<putdata name="Impute" mult="2" dataout="impute_mult2"/>

<putdata name="Impute" mult="3" dataout="impute_mult3"/>

<putdata name="Impute" mult="4" dataout="impute_mult4"/>

<putdata name="Impute" mult="5" dataout="impute_mult5"/>

</stata>
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10.3 BBDESIGN Example, IVEware and SPSS

Section 10.3 demonstrates use of IVEware and SPSS with the BBDESIGN command to
produce an output population data set called ”bbdesign samples.sav” (SPSS format). As
usual, the output data set can be used in additional analyses within SPSS or transferred to
another statistical software package.

<spss name="BBDESIGN Examples">

/* example uses 2011 - 2012 NHANES data, subset for age 18+ for adults*/

/* SPSS .sav file is stored in working folder */

<bbdesign name="BBdesign">

title Use of BBdesign;

datain nhanes1112_adult;

dataout bbdesign_samples ;

stratum sdmvstra ;

cluster sdmvpsu ;

weight wtmec2yr ;

csamples 5 ;

wsamples 5 ;

seed 2001;

run;

</bbdesign>

</spss>

10.4 DESCRIBE Example, IVEware and R

The DESCRIBE command uses IVEware and R to perform a descriptive analysis of age of
interview and Body Mass Index with a gender contrast. This examples uses NCS-R data
with a design-based/multiple imputation approach for variance estimation. The five previ-
ously imputed NCS-R data sets are first imported into R and then used in the DESCRIBE
command.

<R name="DESCRIBE Example">

# iveware examples - R version

# import the input datasets

impute_mult1 <- read.delim("impute_mult1.txt")

save(impute_mult1, file="impute_mult1.rda")

impute_mult2 <- read.delim("impute_mult2.txt")

save(impute_mult2, file="impute_mult2.rda")

impute_mult3 <- read.delim("impute_mult3.txt")

save(impute_mult3, file="impute_mult3.rda")

impute_mult4 <- read.delim("impute_mult4.txt")

save(impute_mult4, file="impute_mult4.rda")

impute_mult5 <- read.delim("impute_mult5.txt")

save(impute_mult5, file="impute_mult5.rda")

# Descriptive Analysis of Age at Interview and BMI

<describe name="DESCRIBE">

title MI Design-based Description;

datain impute_mult1 impute_mult2 impute_mult3 impute_mult4 impute_mult5;

stratum sestrat;

cluster seclustr;

weight ncsrwtsh ;

model mult;

mean intwage bmi;
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contrast sexf;

run;

</describe>

</R>

10.5 REGRESS Example, IVEware and Stata
The REGRESS example inputs five previously imputed NCS-R data sets and performs linear
regression with IVEware and Stata. Note that the imputed input data sets were previously
stored as Stata data sets in .dta format.

<stata name="REGRESS Example with Stata">

/* Analyze 5 imputed data sets with Linear Regression */

<regress name="REGRESS for Linear Regression with Imputed Data Sets">

title Example of REGRESS ;

datain impute_mult1 impute_mult2 impute_mult3 impute_mult4 impute_mult5 ;

estout impute_regress;

stratum sestrat;

cluster seclustr;

weight ncsrwtsh;

dependent bmi;

predictor mde sexf intwage ;

run;

</regress>

</stata>

10.6 SYNTHESIZE Example, IVEware and Stata

This example uses IVEware and Stata to synthesize all variables in the Primary Cardiac
Arrest data set. An output data set called ”synthesize.dta” contains the synthesized and
multiply imputed data.

* Synthesize Example Using PCA and Omega 3 Fatty Acids Data */

<stata name="SYNTHESIZE Example">

<synthesize name="Synthesize All Variables Using PCA and Omega3 Data">

datain test;

continuous AGE NUMCIG YRSSMOKE FATINDEX DHA_EPA REDTOT WGTKG TOTLKCAL HGTCM ;

categorical CASECNT GENDER RACE3 HYPER DIAB SMOKE FAMMI EDUSUBJ3 CHOLESTH ;

mixed CAFFTOT ALCOHOL3 ;

transfer STUDYID ;

synthesize CASECNT AGE GENDER RACE3 HYPER DIAB SMOKE NUMCIG YRSSMOKE FATINDEX

FAMMI EDUSUBJ3 DHA_EPA REDTOT CHOLESTH CAFFTOT WGTKG TOTLKCAL ALCOHOL3 HGTCM ;

restrict NUMCIG(smoke=2,3) YRSSMOKE(smoke=2,3) ;

bounds NUMCIG(>0) YRSSMOKE(>0, <age-12) DHA_EPA(>0) REDTOT(>0) CAFFTOT(>0) TOTLKCAL(>0) ALCOHOL3(>0);

ITERATIONS 2;

MULTIPLES 5;

SEED 2001;

IMPLICATES 5;

DATAOUT synthesize all ;

run;

</synthesize>

</stata>

10.7 COMBINE Example, IVEware and R

The COMBINE example pairs IVEware with R to demonstrate how to combine multiple
data sets. The four HRS data sets (2006, 2008, 2010, 2012) are first imported into R
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using the Foreign package and then concatenated by COMBINE. An output data set called
”combined hrs 2006 2012” in R format is created for subsequent imputation and analysis.

<R name="COMBINE Example">

# iveware examples - R version

# load foreign package and read in SAS data sets

library(foreign)

hrs2006_27jul2016r <- read.xport("hrs2006_27jul2016.xpt")

hrs2008_27jul2016r <- read.xport("hrs2008_27jul2016.xpt")

hrs2010_27jul2016r <- read.xport("hrs2010_27jul2016.xpt")

hrs2012_27jul2016r <- read.xport("hrs2012_27jul2016.xpt")

<combine name="COMBINE_Example_R">

datain hrs2006_27jul2016r hrs2008_27jul2016r hrs2010_27jul2016r hrs2012_27jul2016r ;

dataout combined_hrs_2006_2012;

run;

</combine>

summary(combined_hrs_2006_2012)

</R>
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SRCWare

11.1 Introduction

Chapter 11 demonstrates use of SRCWare, the stand-alone version of IVEware. This chapter
includes examples of the IMPUTE, BBDESIGN, DESCRIBE, REGRESS, SYNTHESIZE,
and COMBINE commands. Input data sets are read into SRCWare using the GETDATA
command while data sets from SRCWare can be output using the PUTDATA command.
Output data sets can be used in subsequent analyses using a software of choice. For examples
of the GETDATA and PUTDATA commands, see Section 1.6 and provided examples on the
IVEware website. Because the IVEware commands have been detailed in previous chapters,
just the code is presented in this chapter.

11.2 IMPUTE Example
<srcware name="SRCWARE_IMPUTE">

/* import the input datasets */

<getdata name="ncsr_ex1">

table ncsr_ex1.txt;

run;

</getdata>

/* Multiple Imputation using IMPUTE*/

<impute name="MI">

title Multiple Imputation Using IMPUTE ;

datain ncsr_ex1 ;

dataout impute_mult1;

default categorical;

continuous bmi intwage ncsrwtsh sestrat ;

transfer caseid ;

iterations 5;

multiples 5;

seed 2001;

run;

</impute>

/* Extract remaining data sets */

<putdata name="MI" mult="2" dataout="impute_mult2" />

<putdata name="MI" mult="3" dataout="impute_mult3" />

<putdata name="MI" mult="4" dataout="impute_mult4" />

<putdata name="MI" mult="5" dataout="impute_mult5" />
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</srcware>

11.3 BBDESIGN Example
<srcware name="SRCWARE_BBDESIGN">

/* import the input dataset*/

<getdata name="nhanes1112_adult">

table nhanes1112_adult.txt;

run;

</getdata>

<bbdesign name="BBdesign">

title Use of BBdesign;

datain nhanes1112_adult;

dataout bbdesign_samples ;

stratum sdmvstra ;

cluster sdmvpsu ;

weight wtmec2yr ;

csamples 5 ;

wsamples 5 ;

seed 2001;

run;

</bbdesign>

</srcware>

11.4 DESCRIBE Example
<srcware name="SRCWARE_IMPUTE">

/* import the input dataset */

<getdata name="ncsr_ex1">

table ncsr_ex1.txt;

run;

</getdata>

/* Review of Multiple Imputation using IMPUTE*/

<impute name="MI">

title Multiple Imputation Using IMPUTE ;

datain ncsr_ex1 ;

dataout impute_mult1;

default categorical;

continuous bmi intwage ncsrwtsh sestrat ;

transfer caseid ;

iterations 5;

multiples 5;

seed 2001;

run;

</impute>

/* Extract remaining data sets */

<putdata name="MI" mult="2" dataout="impute_mult2" />

<putdata name="MI" mult="3" dataout="impute_mult3" />

<putdata name="MI" mult="4" dataout="impute_mult4" />

<putdata name="MI" mult="5" dataout="impute_mult5" />

/* Descriptive Analysis of Age at Interview and BMI, Missing Data Imputed by IVEware */

<describe name="DESCRIBE">

title MI Design-based Description;

datain impute_mult1 impute_mult2 impute_mult3 impute_mult4 impute_mult5 ;

stratum sestrat;

cluster seclustr;
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weight ncsrwtsh ;

model mult;

mean intwage bmi;

contrast sexf;

run;

</describe>

</scrware>

11.5 REGRESS Example
<srcware name="SRCWARE_IMPUTE">

/* import the input datasets */

<getdata name="ncsr_ex1">

table ncsr_ex1.txt;

run;

</getdata>

/* Review of Multiple Imputation using IMPUTE*/

<impute name="MI">

title Multiple Imputation Using IMPUTE ;

datain ncsr_ex1 ;

dataout impute_mult1;

default categorical;

continuous bmi intwage ncsrwtsh sestrat ;

transfer caseid ;

iterations 5;

multiples 5;

seed 2001;

run;

</impute>

/* Extract remaining data sets */

<putdata name="MI" mult="2" dataout="impute_mult2" />

<putdata name="MI" mult="3" dataout="impute_mult3" />

<putdata name="MI" mult="4" dataout="impute_mult4" />

<putdata name="MI" mult="5" dataout="impute_mult5" />

/* Analyze Previously Imputed Data Sets using Linear Regression with REGRESS */

/* Example uses Complex Sample Design Variables and Weight Plus Plots */

<regress name="REGRESS">

title Linear Regression using REGRESS with Imputed Data Sets;

datain impute_mult1 impute_mult2 impute_mult3 impute_mult4 impute_mult5 ;

estout impute_regress;

stratum sestrat;

cluster seclustr;

weight ncsrwtsh;

dependent bmi;

predictor mde sexf intwage ;

link linear ;

plots outplots ;

run;

</regress>

</srcware>

11.6 SYNTHESIZE Example
<srcware name="SRCWARE_SYNTHESIZE">

/* import the input datasets */

<getdata name="test">

table test.txt;

run;

</getdata>
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/* Use SYNTHESIZE command to prepare fully synthesized data set*/

<synthesize name="Synthesize">

datain test;

continuous AGE NUMCIG YRSSMOKE FATINDEX DHA_EPA REDTOT WGTKG TOTLKCAL HGTCM ;

categorical CASECNT GENDER RACE3 HYPER DIAB SMOKE FAMMI EDUSUBJ3 CHOLESTH ;

mixed CAFFTOT ALCOHOL3 ;

transfer STUDYID ;

synthesize CASECNT AGE GENDER RACE3 HYPER DIAB SMOKE NUMCIG

YRSSMOKE FATINDEX FAMMI EDUSUBJ3 DHA_EPA REDTOT CHOLESTH CAFFTOT WGTKG TOTLKCAL

ALCOHOL3 HGTCM ;

restrict NUMCIG(smoke=2,3) YRSSMOKE(smoke=2,3) ;

bounds NUMCIG(>0) YRSSMOKE(>0, <age-12) DHA_EPA(>0) REDTOT(>0) CAFFTOT(>0) TOTLKCAL(>0) ALCOHOL3(>0);

ITERATIONS 2;

MULTIPLES 5;

SEED 2001;

IMPLICATES 5;

DATAOUT synthesize all ;

run;

</synthesize>

</srcware>

11.7 COMBINE Example
<srcware name="SRCWARE_COMBINE">

/* import the input datasets */

<getdata name="hrs2006_27jul2016">

table hrs2006_27jul2016.csv;

run;

</getdata>

<getdata name="hrs2008_27jul2016">

table hrs2008_27jul2016.csv;

run;

</getdata>

<getdata name="hrs2010_27jul2016">

table hrs2010_27jul2016.csv;

run;

</getdata>

<getdata name="hrs2012_27jul2016">

table hrs2012_27jul2016.csv;

run;

</getdata>

/* COMBINE Example Using HRS 2006 2008 2010 and 2012 Data*/

<combine name="COMBINE">

datain hrs2006_27jul2016 hrs2008_27jul2016 hrs2010_27jul2016 hrs2012_27jul2016 ;

dataout combined_hrs_2006_2012 all ;

run;

</combine>

</srcware>



Bibliography

[1] Atkinson, A. C. (1985). Plots, transformations and regression: An introduction to graphical methods of diagnostic regres-
sion analysis. Oxford: Clarendon Press.

[2] Bondarenko, I. & Raghunathan, T. E. (2010). Multiple imputation for causal inference. Arbor, 1001(48109)

[3] Bondarenko, I. & Raghunathan, T. E. (2016). Graphical and numerical diagnostic tools to assess suitability of multiple
imputations and imputation models. Statistics in Medicine, 35, 3007-3020.

[4] Dong, Q., Elliott, M. R. & Raghunathan, T. E. (2014a). A nonparametric method to generate synthetic populations to
adjust for complex sampling design features. Survey Methodology, 40(1), 29-46.

[5] Dong, Q., Elliott, M. R. & Raghunathan, T. E. (2014b). Combining information from multiple complex surveys. Survey
Methodology, 40, 347-354.

[6] Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (1995). Bayesian data analysis. London: Chapman and Hall.

[7] Gelman, A. & Hill, J. (2006). Data analysis using regression and Multilevel/Hierarchical models. New York: Cambridge
University Press.

[8] He, Y. & Raghunathan, T. E. (2006). Tukey’s gh distribution for multiple imputation. The American Statistician, 60,
251-256: Response.

[9] Heeringa, S. G., Little, R. J. A., & Raghunathan, T. E. (1997). Imputation of multivariate data on household net worth.
University of Michigan, Ann Arbor, Michigan,

[10] Kish, L. & Frankel, M. (1974). Inference from complex systems. Journal of the Royal Statistical Society.Series B (Method-
ological), 36(1), 1-37.

[11] Li, K. H., Raghunathan, T. E. & Rubin, D. B. (1991). Large-sample significance levels from multiply imputed data
using moment-based statistics and an F-reference distribution. Journal of the American Statistical Association, 86(416),
1065-1073.

[12] Little, R. J. A., Liu, F. Raghunathan, T. E. (2004). Statistical Disclosure Techniques Based on Multiple Imputation. P.p.
141-152 in Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives: An Essential Journey
with Donald Rubins Statistical Family (A. Gelman X.-L. Meng, eds.).

[13] Raghunathan, T. E. (1994). Monte carlo methods for exploring sensitivity to distributional assumptions in a bayesian
analysis of a series of 2 2 tables. Statistics in Medicine, 13(15), 1525-1538.

[14] Raghunathan, T. E., Lepkowski, J. M., Hoewyk, J. V. & Solenberger, P. (2001). A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology, 27(1), 85-95.

[15] Raghunathan, T. E., Reiter, J. P. & Rubin, D. B. (2003). Multiple imputation for statistical disclosure limitation. Journal
of Official Statistics-Stockholm-, 19(1), 1-16.

[16] Raghunathan, T. E. & Rubin, D. B. (1998). Roles for Bayesian techniques in survey sampling. Proceedings of the Silver
Jubilee Meeting of the Statistical Society of Canada, , 51-55.

[17] Raghunathan, T. E. (2015). In Chapman & Hall/CRC Interdisciplinary Statistics Series (Ed.), Missing data analysis in
practice. Boca Raton: CRC Press.

[18] Raghunathan, T. E, Berglund, P., and Solenberger, P. W. (2017). Multiple Imputation in Practice: With Examples Using
IVEware. Boca Raton: CRC Press.

80



BIBLIOGRAPHY 81

[19] Reiter, J. (2002). Satisfying disclosure restrictions with synthetic data sets. Journal of Official Statistics, 18(4), 531-543.

[20] Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592.

[21] Rubin, D. B. (1987b). Multiple imputation for nonresponse in surveys (99th ed.) Wiley.

[22] Schenker, N., Raghunathan, T. E. & Bondarenko, I. (2010). Improving on analyses of self-reported data in a large-scale
health survey by using information from an examination-based survey. Statistics in Medicine, 29(5), 533-545.

[23] van Buuren, S. (2012). Flexible imputation of missing data. Chapman and Hall/CRC.

[24] van Buuren, S. & Oudshoorn, K. (1999). Flexible multivariate imputation by MICE. Technical Report, Leiden: TNO
Preventie En Gezondheid, TNO/VGZ/PG 99.054.

[25] Vittinghoff, E., Glidden, D. V., Shiboski, S. C. & McCulloch, C. E. (2005). Regression methods in biostatistics: Linear,
logistic, survival, and repeated measures models. New York, NY, US: Springer Publishing Co.

[26] Weisberg, S. (2013). Applied linear regression (4th ed.) Wiley.

[27] Zhou, H., Elliott, M. R. & Raghunathan, T. E. (2016). Synthetic Multiple-Imputation Procedure for Multistage Complex
Samples, Journal of Official Statistics, 32, 231-256.

[28] Zhou, H., Elliott, M. R.& Raghunathan, T. E. (2016). Multiple imputation in two-stage cluster samples using the weighted
finite population bayesian bootstrap. Journal of Survey Statistics and Methodology, 4, 139-170.

[29] Zhou, H., Elliott, M. R. & Raghunathan, T. E. (2015). A two-step semiparametric method to accommodate sampling
weights in multiple imputation. Biometrics, 72, 242-252.


	Basics
	What is IVEware? 
	Download and Setup
	Windows 
	Linux
	Mac OS 

	Structure of IVEware
	How to run IVEware with software packages?
	IVEware and SAS
	IVEware and R
	SPSS and IVEware 
	Stata and IVEware

	How to run IVEware as stand-alone
	Reading and Writing Other Software Formats

	IMPUTE 
	Introduction
	Required IMPUTE Statements
	Input and Output Data Sets
	DECLARING VARIABLE TYPES

	Restrictions and Bounds
	Model-Building Statements
	Other Commands

	PUTDATA 

	BBDESIGN
	Introduction
	BBDESIGN Statements

	DESCRIBE
	Introduction
	DESCRIBE Statements
	Required or Standard Statements
	Design Variables
	Analysis Statements 
	Missing Data Handling
	Other commands


	REGRESS
	Introduction
	REGRESS Statements
	Models
	Output files
	Design Variables


	SASMOD
	Introduction
	SASMOD Statements

	SYNTHESIZE
	Introduction
	SYNTHESIZE Statements
	Variable Types


	COMBINE
	Introduction
	COMBINE Statements

	IVEware and SAS
	Introduction
	IMPUTE Examples
	IMPUTE Example with ABB Option
	IMPUTE Example with GH Option

	BBDESIGN Examples
	DESCRIBE Example
	REGRESS Example
	SASMOD Example 
	SYNTHESIZE Examples
	Fully Synthesized Data Set
	Partially Synthesized Data Set

	COMBINE Example

	IVEware and Stata, SPSS, and R
	Introduction
	IMPUTE Example, IVEware and Stata
	BBDESIGN Example, IVEware and SPSS
	DESCRIBE Example, IVEware and R
	REGRESS Example, IVEware and Stata
	SYNTHESIZE Example, IVEware and Stata
	COMBINE Example, IVEware and R

	SRCWare
	Introduction
	IMPUTE Example
	BBDESIGN Example
	DESCRIBE Example
	REGRESS Example 
	SYNTHESIZE Example 
	COMBINE Example 


